三角波 编辑
三角波是一种非正弦波,其波形是三角形,因此得名。它具有周期函数、分段连续性,并且是一个实函数
1
相关
沃尔什函数可以被看作一个和连续类比系统的三角波相对应的系统,可以说是离散而且数位版本的三角波。和三角波不同,沃尔什函数只有部分连续。这个函数的值域只有 −1 和 +1 两个值。有了沃尔什函数当作基础,当我们要进行类似于傅立叶转换的沃尔什转换时,不需要做在虚数值域上的浮点数计算,而能够减少计算量与误差。
芯片音乐,也被称为8bit音乐,是一种电子音乐形式,形成于1980年代。它利用老式电子计算机,电子游戏和街机等的音乐芯片,或者使用仿真器制作。 芯片音乐一般包括基本波形,如方波,锯齿波或三角波和基本的打击乐器。
芯片音乐,也被称为8bit音乐,是一种电子音乐形式,形成于1980年代。它利用老式电子计算机,电子游戏和街机等的音乐芯片,或者使用仿真器制作。 芯片音乐一般包括基本波形,如方波,锯齿波或三角波和基本的打击乐器。
加伯–韦格纳转换是一种时频分析的工具,由加伯转换及韦格纳转换两种时频分析工具所组合而成,加伯转换根据丹尼斯·盖博所命名,而韦格纳转换则是根据尤金·维格纳,原名维格纳·帕尔·耶诺所命名。加伯转换是一窗函数为高斯函数的短时距傅立叶变换,由于传统短时距傅立叶变换的窗函数常为一矩形函数,由于矩形函数的傅立叶变换为一个Sinc函数,所以在做时频分析的时候容易会有Side lobe的现象,所以加伯转换尝试利用高斯函数来当作窗函数,三角波为两个矩形函数卷积而来,高斯函数则为无限多个矩形函数卷积而来所以在频域上代表无限多个Sinc函数相乘而来,这样相乘原先Sinc函数小于1的数值越乘越小,Side lobe的影响也跟着变小,但它必须遵守海森堡测不准原理,所以它的清晰度有它的极限。而韦格纳转换由于是对讯号的自相关函数做傅立叶转换,所以清晰度可以成功超越测不准原理所规范的极限。但它的缺点在于当一个讯号有两个以上的成分所组成,分析出来的时频图就会产生严重的cross-term的现象。为了结合两者的优点所以S.C Pie和J.J.Ding在2007年提出了加伯-韦格纳转换。
加伯–韦格纳转换是一种时频分析的工具,由加伯转换及韦格纳转换两种时频分析工具所组合而成,加伯转换根据丹尼斯·盖博所命名,而韦格纳转换则是根据尤金·维格纳,原名维格纳·帕尔·耶诺所命名。加伯转换是一窗函数为高斯函数的短时距傅立叶变换,由于传统短时距傅立叶变换的窗函数常为一矩形函数,由于矩形函数的傅立叶变换为一个Sinc函数,所以在做时频分析的时候容易会有Side lobe的现象,所以加伯转换尝试利用高斯函数来当作窗函数,三角波为两个矩形函数卷积而来,高斯函数则为无限多个矩形函数卷积而来所以在频域上代表无限多个Sinc函数相乘而来,这样相乘原先Sinc函数小于1的数值越乘越小,Side lobe的影响也跟着变小,但它必须遵守海森堡测不准原理,所以它的清晰度有它的极限。而韦格纳转换由于是对讯号的自相关函数做傅立叶转换,所以清晰度可以成功超越测不准原理所规范的极限。但它的缺点在于当一个讯号有两个以上的成分所组成,分析出来的时频图就会产生严重的cross-term的现象。为了结合两者的优点所以S.C Pie和J.J.Ding在2007年提出了加伯-韦格纳转换。
芯片音乐,也被称为8bit音乐,是一种电子音乐形式,形成于1980年代。它利用老式电子计算机,电子游戏和街机等的音乐芯片,或者使用仿真器制作。 芯片音乐一般包括基本波形,如方波,锯齿波或三角波和基本的打击乐器。