基灵矢量场,基灵矢量或基灵矢量场,以德国数学家威尔海姆·基灵命名,是定义在黎曼流形或伪黎曼流形上的一组矢量场,流形的度规在这组矢量的方向上能够保持不变。基灵矢量是等距同构的无穷小生成元,即由基灵矢量场生成的流包含有一种对称性,也就是说流形在基灵矢量场的方向上进行平移不会改变其上点与点之间的距离。一个简单的例子是一个圆周上具有相同长度并且指向顺时针方向的矢量场即是一个基灵矢量场,因为将圆周上的点沿这些方向平移等同于顺时针转动这个圆周而不改变彼此间的距离。
基灵矢量场,基灵矢量或基灵矢量场,以德国数学家威尔海姆·基灵命名,是定义在黎曼流形或伪黎曼流形上的一组矢量场,流形的度规在这组矢量的方向上能够保持不变。基灵矢量是等距同构的无穷小生成元,即由基灵矢量场生成的流包含有一种对称性,也就是说流形在基灵矢量场的方向上进行平移不会改变其上点与点之间的距离。一个简单的例子是一个圆周上具有相同长度并且指向顺时针方向的矢量场即是一个基灵矢量场,因为将圆周上的点沿这些方向平移等同于顺时针转动这个圆周而不改变彼此间的距离。
在微分几何中,拉普拉斯算子可以推广为定义在曲面,或更一般地黎曼流形与伪黎曼流形上,函数的算子。这个更一般的算子叫做拉普拉斯-贝尔特拉米算子。与拉普拉斯算子一样,拉普拉斯–贝尔特拉米算子定义为梯度的散度。这个算子作为共变导数的散度,可以延拓到张量上的算子。或者,利用散度与外导数,这个算子可以推广到微分形式上的算子,所得的算子称为拉普拉斯-德拉姆算子。
在微分几何中,拉普拉斯算子可以推广为定义在曲面,或更一般地黎曼流形与伪黎曼流形上,函数的算子。这个更一般的算子叫做拉普拉斯-贝尔特拉米算子。与拉普拉斯算子一样,拉普拉斯–贝尔特拉米算子定义为梯度的散度。这个算子作为共变导数的散度,可以延拓到张量上的算子。或者,利用散度与外导数,这个算子可以推广到微分形式上的算子,所得的算子称为拉普拉斯-德拉姆算子。
基灵矢量场,基灵矢量或基灵矢量场,以德国数学家威尔海姆·基灵命名,是定义在黎曼流形或伪黎曼流形上的一组矢量场,流形的度规在这组矢量的方向上能够保持不变。基灵矢量是等距同构的无穷小生成元,即由基灵矢量场生成的流包含有一种对称性,也就是说流形在基灵矢量场的方向上进行平移不会改变其上点与点之间的距离。一个简单的例子是一个圆周上具有相同长度并且指向顺时针方向的矢量场即是一个基灵矢量场,因为将圆周上的点沿这些方向平移等同于顺时针转动这个圆周而不改变彼此间的距离。
基灵矢量场,基灵矢量或基灵矢量场,以德国数学家威尔海姆·基灵命名,是定义在黎曼流形或伪黎曼流形上的一组矢量场,流形的度规在这组矢量的方向上能够保持不变。基灵矢量是等距同构的无穷小生成元,即由基灵矢量场生成的流包含有一种对称性,也就是说流形在基灵矢量场的方向上进行平移不会改变其上点与点之间的距离。一个简单的例子是一个圆周上具有相同长度并且指向顺时针方向的矢量场即是一个基灵矢量场,因为将圆周上的点沿这些方向平移等同于顺时针转动这个圆周而不改变彼此间的距离。
基灵矢量场,基灵矢量或基灵矢量场,以德国数学家威尔海姆·基灵命名,是定义在黎曼流形或伪黎曼流形上的一组矢量场,流形的度规在这组矢量的方向上能够保持不变。基灵矢量是等距同构的无穷小生成元,即由基灵矢量场生成的流包含有一种对称性,也就是说流形在基灵矢量场的方向上进行平移不会改变其上点与点之间的距离。一个简单的例子是一个圆周上具有相同长度并且指向顺时针方向的矢量场即是一个基灵矢量场,因为将圆周上的点沿这些方向平移等同于顺时针转动这个圆周而不改变彼此间的距离。
基灵矢量场,基灵矢量或基灵矢量场,以德国数学家威尔海姆·基灵命名,是定义在黎曼流形或伪黎曼流形上的一组矢量场,流形的度规在这组矢量的方向上能够保持不变。基灵矢量是等距同构的无穷小生成元,即由基灵矢量场生成的流包含有一种对称性,也就是说流形在基灵矢量场的方向上进行平移不会改变其上点与点之间的距离。一个简单的例子是一个圆周上具有相同长度并且指向顺时针方向的矢量场即是一个基灵矢量场,因为将圆周上的点沿这些方向平移等同于顺时针转动这个圆周而不改变彼此间的距离。