再复合时期 编辑
复合是宇宙论中带电的电子质子在宇宙中首度结合成电荷原子历元。在大爆炸之后,宇宙是热的,光子、电子和质子密集电浆,电浆和光子的交互作用造成的宇宙辐射,有效的使宇宙变得不透明。当宇宙膨胀时,它开始变冷。最终,宇宙的温度冷到高能态中性氢可以形成的温度点,自由电子和质子与中性氢原子的比率下降至约为1比10,000。不久之后,在宇宙中的光子与物质退耦,因此复合有时也被称为光子退耦,尽管复合与光子退耦是不同的事件。一旦光子与物质退耦,它们在宇宙中不与物质交互作用的自由流,就构成我们今天所观测到的宇宙微波背景辐射。复合大约发生在宇宙年龄380,000岁,或是大约红移= 7003110000000000000♠1100。
2
相关
宇宙微波背景是宇宙学中“大霹雳”遗留下来的热辐射。在早期的文献中,“宇宙微波背景”称为“宇宙微波背景辐射”或“遗留辐射”,是一种充满整个宇宙的电磁辐射。特征和绝对温标2.725K的黑体辐射相同。频率属于微波范围。宇宙微波背景是宇宙背景辐射之一,为观测宇宙学的基础,因其为宇宙中最古老的光,可追溯至再复合时期。利用传统的光学望远镜,恒星和星系之间的空间是一片漆黑。然而,利用灵敏的辐射望远镜可发现微弱的背景辉光,且在各个方向上几乎一模一样,与任何恒星,星系或其他对象都毫无关系。这种光的电磁波谱在微波区域最强。1964年美国射电天文学家阿诺·彭齐亚斯和罗伯特·伍德罗·威尔逊偶然发现宇宙微波背景,这一发现是基于于1940年代开始的研究,并于1978年获得诺贝尔物理奖。
宇宙微波背景是宇宙学中“大霹雳”遗留下来的热辐射。在早期的文献中,“宇宙微波背景”称为“宇宙微波背景辐射”或“遗留辐射”,是一种充满整个宇宙的电磁辐射。特征和绝对温标2.725K的黑体辐射相同。频率属于微波范围。宇宙微波背景是宇宙背景辐射之一,为观测宇宙学的基础,因其为宇宙中最古老的光,可追溯至再复合时期。利用传统的光学望远镜,恒星和星系之间的空间是一片漆黑。然而,利用灵敏的辐射望远镜可发现微弱的背景辉光,且在各个方向上几乎一模一样,与任何恒星,星系或其他对象都毫无关系。这种光的电磁波谱在微波区域最强。1964年美国射电天文学家阿诺·彭齐亚斯和罗伯特·伍德罗·威尔逊偶然发现宇宙微波背景,这一发现是基于于1940年代开始的研究,并于1978年获得诺贝尔物理奖。
宇宙微波背景是宇宙学中“大霹雳”遗留下来的热辐射。在早期的文献中,“宇宙微波背景”称为“宇宙微波背景辐射”或“遗留辐射”,是一种充满整个宇宙的电磁辐射。特征和绝对温标2.725K的黑体辐射相同。频率属于微波范围。宇宙微波背景是宇宙背景辐射之一,为观测宇宙学的基础,因其为宇宙中最古老的光,可追溯至再复合时期。利用传统的光学望远镜,恒星和星系之间的空间是一片漆黑。然而,利用灵敏的辐射望远镜可发现微弱的背景辉光,且在各个方向上几乎一模一样,与任何恒星,星系或其他对象都毫无关系。这种光的电磁波谱在微波区域最强。1964年美国射电天文学家阿诺·彭齐亚斯和罗伯特·伍德罗·威尔逊偶然发现宇宙微波背景,这一发现是基于于1940年代开始的研究,并于1978年获得诺贝尔物理奖。
宇宙微波背景是宇宙学中“大霹雳”遗留下来的热辐射。在早期的文献中,“宇宙微波背景”称为“宇宙微波背景辐射”或“遗留辐射”,是一种充满整个宇宙的电磁辐射。特征和绝对温标2.725K的黑体辐射相同。频率属于微波范围。宇宙微波背景是宇宙背景辐射之一,为观测宇宙学的基础,因其为宇宙中最古老的光,可追溯至再复合时期。利用传统的光学望远镜,恒星和星系之间的空间是一片漆黑。然而,利用灵敏的辐射望远镜可发现微弱的背景辉光,且在各个方向上几乎一模一样,与任何恒星,星系或其他对象都毫无关系。这种光的电磁波谱在微波区域最强。1964年美国射电天文学家阿诺·彭齐亚斯和罗伯特·伍德罗·威尔逊偶然发现宇宙微波背景,这一发现是基于于1940年代开始的研究,并于1978年获得诺贝尔物理奖。
宇宙微波背景是宇宙学中“大霹雳”遗留下来的热辐射。在早期的文献中,“宇宙微波背景”称为“宇宙微波背景辐射”或“遗留辐射”,是一种充满整个宇宙的电磁辐射。特征和绝对温标2.725K的黑体辐射相同。频率属于微波范围。宇宙微波背景是宇宙背景辐射之一,为观测宇宙学的基础,因其为宇宙中最古老的光,可追溯至再复合时期。利用传统的光学望远镜,恒星和星系之间的空间是一片漆黑。然而,利用灵敏的辐射望远镜可发现微弱的背景辉光,且在各个方向上几乎一模一样,与任何恒星,星系或其他对象都毫无关系。这种光的电磁波谱在微波区域最强。1964年美国射电天文学家阿诺·彭齐亚斯和罗伯特·伍德罗·威尔逊偶然发现宇宙微波背景,这一发现是基于于1940年代开始的研究,并于1978年获得诺贝尔物理奖。
宇宙微波背景是宇宙学中“大霹雳”遗留下来的热辐射。在早期的文献中,“宇宙微波背景”称为“宇宙微波背景辐射”或“遗留辐射”,是一种充满整个宇宙的电磁辐射。特征和绝对温标2.725K的黑体辐射相同。频率属于微波范围。宇宙微波背景是宇宙背景辐射之一,为观测宇宙学的基础,因其为宇宙中最古老的光,可追溯至再复合时期。利用传统的光学望远镜,恒星和星系之间的空间是一片漆黑。然而,利用灵敏的辐射望远镜可发现微弱的背景辉光,且在各个方向上几乎一模一样,与任何恒星,星系或其他对象都毫无关系。这种光的电磁波谱在微波区域最强。1964年美国射电天文学家阿诺·彭齐亚斯和罗伯特·伍德罗·威尔逊偶然发现宇宙微波背景,这一发现是基于于1940年代开始的研究,并于1978年获得诺贝尔物理奖。
宇宙微波背景是宇宙学中“大霹雳”遗留下来的热辐射。在早期的文献中,“宇宙微波背景”称为“宇宙微波背景辐射”或“遗留辐射”,是一种充满整个宇宙的电磁辐射。特征和绝对温标2.725K的黑体辐射相同。频率属于微波范围。宇宙微波背景是宇宙背景辐射之一,为观测宇宙学的基础,因其为宇宙中最古老的光,可追溯至再复合时期。利用传统的光学望远镜,恒星和星系之间的空间是一片漆黑。然而,利用灵敏的辐射望远镜可发现微弱的背景辉光,且在各个方向上几乎一模一样,与任何恒星,星系或其他对象都毫无关系。这种光的电磁波谱在微波区域最强。1964年美国射电天文学家阿诺·彭齐亚斯和罗伯特·伍德罗·威尔逊偶然发现宇宙微波背景,这一发现是基于于1940年代开始的研究,并于1978年获得诺贝尔物理奖。
宇宙微波背景是宇宙学中“大霹雳”遗留下来的热辐射。在早期的文献中,“宇宙微波背景”称为“宇宙微波背景辐射”或“遗留辐射”,是一种充满整个宇宙的电磁辐射。特征和绝对温标2.725K的黑体辐射相同。频率属于微波范围。宇宙微波背景是宇宙背景辐射之一,为观测宇宙学的基础,因其为宇宙中最古老的光,可追溯至再复合时期。利用传统的光学望远镜,恒星和星系之间的空间是一片漆黑。然而,利用灵敏的辐射望远镜可发现微弱的背景辉光,且在各个方向上几乎一模一样,与任何恒星,星系或其他对象都毫无关系。这种光的电磁波谱在微波区域最强。1964年美国射电天文学家阿诺·彭齐亚斯和罗伯特·伍德罗·威尔逊偶然发现宇宙微波背景,这一发现是基于于1940年代开始的研究,并于1978年获得诺贝尔物理奖。
宇宙微波背景是宇宙学中“大霹雳”遗留下来的热辐射。在早期的文献中,“宇宙微波背景”称为“宇宙微波背景辐射”或“遗留辐射”,是一种充满整个宇宙的电磁辐射。特征和绝对温标2.725K的黑体辐射相同。频率属于微波范围。宇宙微波背景是宇宙背景辐射之一,为观测宇宙学的基础,因其为宇宙中最古老的光,可追溯至再复合时期。利用传统的光学望远镜,恒星和星系之间的空间是一片漆黑。然而,利用灵敏的辐射望远镜可发现微弱的背景辉光,且在各个方向上几乎一模一样,与任何恒星,星系或其他对象都毫无关系。这种光的电磁波谱在微波区域最强。1964年美国射电天文学家阿诺·彭齐亚斯和罗伯特·伍德罗·威尔逊偶然发现宇宙微波背景,这一发现是基于于1940年代开始的研究,并于1978年获得诺贝尔物理奖。