四维 编辑
物理学数学中,可将



n


{\displaystyle n}

个数的向量理解为一个



n


{\displaystyle n}

欧几里得空间中的坐标系。当



n
=
4


{\displaystyle n=4}

时,所有这样的位置的集合就叫做四维空间。四维空间和人居住的三维空间不同,因为多了一个维度。
6
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
三维空间,日常生活中可指由长、宽、高三个维度所构成的空间,而且常常是指三维的欧几里得空间。在历史上很长的一段时期中,三维空间被认为是我们生存的空间的数学模型。当时的物理学家认为空间是平坦的。20世纪以来,非欧几何的发现使得实际空间的性质有了其它的可能性。而相对论的诞生以及相应的数学描述:闵可夫斯基时空将时间和空间整体地作为四维的连续统一体进行看待。弦理论问世以后,用三维空间来描述现实中的宇宙已经不再足够,而需要用到更高维的数学模型,例如十维的空间。
三维空间,日常生活中可指由长、宽、高三个维度所构成的空间,而且常常是指三维的欧几里得空间。在历史上很长的一段时期中,三维空间被认为是我们生存的空间的数学模型。当时的物理学家认为空间是平坦的。20世纪以来,非欧几何的发现使得实际空间的性质有了其它的可能性。而相对论的诞生以及相应的数学描述:闵可夫斯基时空将时间和空间整体地作为四维的连续统一体进行看待。弦理论问世以后,用三维空间来描述现实中的宇宙已经不再足够,而需要用到更高维的数学模型,例如十维的空间。
三维空间,日常生活中可指由长、宽、高三个维度所构成的空间,而且常常是指三维的欧几里得空间。在历史上很长的一段时期中,三维空间被认为是我们生存的空间的数学模型。当时的物理学家认为空间是平坦的。20世纪以来,非欧几何的发现使得实际空间的性质有了其它的可能性。而相对论的诞生以及相应的数学描述:闵可夫斯基时空将时间和空间整体地作为四维的连续统一体进行看待。弦理论问世以后,用三维空间来描述现实中的宇宙已经不再足够,而需要用到更高维的数学模型,例如十维的空间。
三维空间,日常生活中可指由长、宽、高三个维度所构成的空间,而且常常是指三维的欧几里得空间。在历史上很长的一段时期中,三维空间被认为是我们生存的空间的数学模型。当时的物理学家认为空间是平坦的。20世纪以来,非欧几何的发现使得实际空间的性质有了其它的可能性。而相对论的诞生以及相应的数学描述:闵可夫斯基时空将时间和空间整体地作为四维的连续统一体进行看待。弦理论问世以后,用三维空间来描述现实中的宇宙已经不再足够,而需要用到更高维的数学模型,例如十维的空间。
在数学中,四维凸正多胞体是指一类既是凹凸性的又是正图形的的四维多胞体。它们是柏拉图立体和正多边形的四维类比。它们最先在19世纪被数学家路德维希·施莱夫利所发现,其中五个与五个柏拉图立体一一对应,另外一个没有好的三维类比。
四维柱体柱是三维柱体在四维的类比。
圆柱体柱的结构与克里福德环相似。
四维柱体柱都是由凸多边形组成,以三角三角柱体柱为例:它是由6个三角柱组成。在三维空间可以把圆形向第三维度拉伸形成圆柱体。而在四维空间,还可以取两个球体的笛卡儿积得到一个圆柱体柱。
时间悖论最早是在科幻小说中提到的。这个悖论的必要前提是:人类可以随心所欲的控制三维空间之后的“第四维”——时间,能够回到过去或者未来。
在几何学中,三面体是指由3个面组成的多面体。面为平面的三面体在三维空间不能存在,因为要至少四个顶点才能在三维空间形成有体积的多面体,除非它的面是曲面,或是存在四维超球面。此外,有一种抽象射影多面体是三面体,即立方体半形。
在几何学中,三面体是指由3个面组成的多面体。面为平面的三面体在三维空间不能存在,因为要至少四个顶点才能在三维空间形成有体积的多面体,除非它的面是曲面,或是存在四维超球面。此外,有一种抽象射影多面体是三面体,即立方体半形。
在几何学中,三面体是指由3个面组成的多面体。面为平面的三面体在三维空间不能存在,因为要至少四个顶点才能在三维空间形成有体积的多面体,除非它的面是曲面,或是存在四维超球面。此外,有一种抽象射影多面体是三面体,即立方体半形。