生物信息学利用应用数学、信息学、统计学和计算机科学的方法研究生物学的问题。生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索、处理及利用。目前主要的研究方向有:序列比对、序列组装、基因识别、基因重组、蛋白质结构预测、基因表达、蛋白质反应的预测,以及建立进化模型。
遗传连锁是指有性生殖中的减数分裂期在同一染色体上两个位置靠得很近的基因的核酸序列有同时被遗传的倾向。若两个遗传标记所在的基因座相互靠得很近,则在染色体互换过程中它们被分离进入不同染色单体中的可能性较小,并因此得名为遗传“连锁”。换言之,同染色体上两个基因的距离越近,二者发生基因重组的概率就越低,就越容易被同时遗传。不同染色体上的基因是完全不连锁的,但其可能有害的等位基因的外显度可能受其他等位基因的影响,而这些其他等位基因可能位于别的染色体上。
有性生殖是繁殖的一种类型,它导致了后代加强基因多样化。它可以用两个进程刻画。第一个是减数分裂,涉及将染色体个数减半。第二个是受精,这个过程中两个配偶子融合,并恢复原来的染色体个数。在减数分裂时,每对染色体通常交叉以达到基因重组。
生物信息学利用应用数学、信息学、统计学和计算机科学的方法研究生物学的问题。生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索、处理及利用。目前主要的研究方向有:序列比对、序列组装、基因识别、基因重组、蛋白质结构预测、基因表达、蛋白质反应的预测,以及建立进化模型。
有性生殖是繁殖的一种类型,它导致了后代加强基因多样化。它可以用两个进程刻画。第一个是减数分裂,涉及将染色体个数减半。第二个是受精,这个过程中两个配偶子融合,并恢复原来的染色体个数。在减数分裂时,每对染色体通常交叉以达到基因重组。
剪接,是一种基因重组现象,在遗传学中,主要是指细胞核内基因资讯在转录过程中或是在转录过后的一种修饰,即将内含子移除及合并外显子——内含子与外显子的名称是通用于编码基因的DNA及其转录后的RNA——是真核生物的前mRNA变成MRNA的过程之一。剪接过程是剪接体内核糖核酸核苷酸之间的一连串生化反应,并由剪接体内小核核糖蛋白中的snRNA负责催化并作用。此外,也有一些类型不需外在催化物质,而是在特定二价金属离子存在的情况下,以RNA自我催化的方式进行剪接,如第一型或第二型内含子或核酸酶。这也是真核生物与原核生物的区别之一。成熟的mRNA会接着进行蛋白质生物合成中的翻译,以产生蛋白质,称转译作用。
染色体互换是指有性生殖中,两条同源染色体的非姊妹染色单体部分的DNA发生交换。它是基因重组的最后阶段之一,发生在减数分裂第一前期粗线期的联会的过程中。联会在联会复合体发育前就开始了,直到前期I接近结束时才完成。交叉互换通常发生在配对染色体上的匹配区域断裂,然后与另一个染色体重新连接时。
人类繁殖 是任何导致人体受精的有性生殖,通常带有一男一女的性交。 在性交过程中,男性生殖系统以及女性生殖系统的动作导致出女性的卵子和男性的精子的受精作用。 这些专门用以生殖的细胞被称为配子,是经过减数分裂而产生的。 正常的体细胞拥有23对,46条染色体,而配子细胞只有23条不成对的染色体,而当两细胞合成一个受精卵细胞时,基因重组开始发生,而新的受精卵有来自父母双方各23条的染色体,并成为23对。 在怀孕期之后,即开始分娩。 受精作用可透过人工授精达成,其不需要经过性交动作。
有性生殖是繁殖的一种类型,它导致了后代加强基因多样化。它可以用两个进程刻画。第一个是减数分裂,涉及将染色体个数减半。第二个是受精,这个过程中两个配偶子融合,并恢复原来的染色体个数。在减数分裂时,每对染色体通常交叉以达到基因重组。
准性生殖又称类有性生殖、拟有性生殖,是某些真菌特有的一种生殖机制,菌丝或酵母菌进行胞质融合与后,不进行减数分裂,亦不形成子实体与孢子,而是在多次有丝分裂中逐渐丢失染色体,恢复成原本的染色体倍性,过程中可使染色体重新分配到不同子细胞中,且有丝分裂时可能有互换发生而导致基因重组,增加真菌的遗传多样性。准性生殖最初于1953年由意大利遗传学家基多·庞蒂科夫在小巢状曲菌中发现,为两个单倍体经形成二倍体后,经多次有丝分裂渐恢复成单倍体。有些可行准性生殖的真菌也可进行正常的有性生殖,经减数分裂产生孢子,白色念珠菌则没有被观察到正常有性生殖的现象,只能进行无性生殖与准性生殖,这种真菌在正常状态下即为二倍体,后会变成四倍体,再经多次有丝分裂恢复为二倍体。