方向导数是分析学特别是多元微积分中的概念。一个标量场在某点沿着某个向量方向上的方向导数,描绘了该点附近标量场沿着该向量方向变动时的瞬时变化率。方向导数是偏导数的概念的推广,也是加托导数的一个特例。
向量分析,或称为向量微积分是数学的一个分支,主要研究在3维欧几里得空间
R
3
{\displaystyle \mathbb {R} ^{3}}
中向量场的微分和积分。“向量分析”有时也用作多元微积分的代名词,其中包括向量分析,以及偏微分和多重积分等更广泛的问题。
向量分析,或称为向量微积分是数学的一个分支,主要研究在3维欧几里得空间
R
3
{\displaystyle \mathbb {R} ^{3}}
中向量场的微分和积分。“向量分析”有时也用作多元微积分的代名词,其中包括向量分析,以及偏微分和多重积分等更广泛的问题。
在数学中, 矩阵微积分是多元微积分的一种特殊表达,尤其是在矩阵空间上进行讨论的时候。它把单个函数对多个变量或者多元函数对单个变量的偏导数写成向量和矩阵的形式,使其可以被当成一个整体被处理。这使得要在多元函数寻找最大或最小值,又或是要为微分方程系统寻解的过程大幅简化。这里我们主要使用统计学和工程学中的惯用记法,而张量下标记法更常用于物理学中。
向量分析,或称为向量微积分是数学的一个分支,主要研究在3维欧几里得空间
R
3
{\displaystyle \mathbb {R} ^{3}}
中向量场的微分和积分。“向量分析”有时也用作多元微积分的代名词,其中包括向量分析,以及偏微分和多重积分等更广泛的问题。
方向导数是分析学特别是多元微积分中的概念。一个标量场在某点沿着某个向量方向上的方向导数,描绘了该点附近标量场沿着该向量方向变动时的瞬时变化率。方向导数是偏导数的概念的推广,也是加托导数的一个特例。