选择公理是数学中的一条集合论公理。这条公理声明,对所有非空集指标集集族
i
∈
I
{\displaystyle _{i\in I}}
,总存在一个索引族
i
∈
I
{\displaystyle _{i\in I}}
,对每一个
i
∈
I
{\displaystyle i\in I}
,均有
x
i
∈
S
i
{\displaystyle x_{i}\in S_{i}}
。选择公理最早于1904年,由恩斯特·策梅洛为证明良序定理而公式化完成。
策梅洛集合论,设立自恩斯特·策梅洛在1908年的重要论文,它是现代集合论的祖先。它与它的后代有特定的差别,经常被误解并经常被误引用。本文架设最初的公理,带有最初的文本和编号。
策梅洛集合论,设立自恩斯特·策梅洛在1908年的重要论文,它是现代集合论的祖先。它与它的后代有特定的差别,经常被误解并经常被误引用。本文架设最初的公理,带有最初的文本和编号。
策梅洛定理是博弈论的一条定理,以恩斯特·策梅洛命名。定理表示在二人的有限游戏中,如果双方皆拥有完全的资讯,并且运气因素并不牵涉在游戏中,那先行或后行者当中必有一方有必胜/必不败的策略。若运用至国际象棋,则策梅洛定理表示“要么黑方有必胜之策略、要么白方有必胜之策略、要么双方也有必不败之策略”。
策梅洛集合论,设立自恩斯特·策梅洛在1908年的重要论文,它是现代集合论的祖先。它与它的后代有特定的差别,经常被误解并经常被误引用。本文架设最初的公理,带有最初的文本和编号。
策梅洛集合论,设立自恩斯特·策梅洛在1908年的重要论文,它是现代集合论的祖先。它与它的后代有特定的差别,经常被误解并经常被误引用。本文架设最初的公理,带有最初的文本和编号。
策梅洛集合论,设立自恩斯特·策梅洛在1908年的重要论文,它是现代集合论的祖先。它与它的后代有特定的差别,经常被误解并经常被误引用。本文架设最初的公理,带有最初的文本和编号。