在概率论中,随机事件指的是一个被赋与几率的事物集合,也就是样本空间中的一个子集。简单来说,在一次随机试验中,某个特定事件可能出现也有可能不出现;但当试验次数增多,我们可以观察到某种规律性的结果,就是随机事件。基本上,只要样本空间是有限的,则在样本空间内的任何一个子集合,都可以被称为是一个事件。然而,当样本空间是无限的时候,特别是可数集之时,就常常不能定义所有的子集为随机事件了。因此,为了定义一个概率空间,常常需要去掉样本空间的某些子集,规定他们不能成为事件。
在概率论中,随机事件指的是一个被赋与几率的事物集合,也就是样本空间中的一个子集。简单来说,在一次随机试验中,某个特定事件可能出现也有可能不出现;但当试验次数增多,我们可以观察到某种规律性的结果,就是随机事件。基本上,只要样本空间是有限的,则在样本空间内的任何一个子集合,都可以被称为是一个事件。然而,当样本空间是无限的时候,特别是可数集之时,就常常不能定义所有的子集为随机事件了。因此,为了定义一个概率空间,常常需要去掉样本空间的某些子集,规定他们不能成为事件。
在统计物理中,系综代表一定条件下一个体系的大量可能状态的集合。也就是说,系综是系统状态的一个概率分布。对一相同性质的体系,其微观状态仍然可以大不相同。在概率论和数理统计的文献中,使用“概率空间”指代相同的概念。
测度空间是测度论的基本概念,可以看做是面积概念的推广,由一个基本的集合
X
{\displaystyle X}
以及基于这集合的某些子集合所购成的一个新的集合
A
{\displaystyle {\mathcal {A}}}
,这新集合会满足 Σ-代数的性质,直觉的讲,对
A
{\displaystyle {\mathcal {A}}}
中的元素我们都可以用某种方法去“测量”其大小、面积或几率等,其真正意义要看所在空间
X
{\displaystyle X}
来决定。和一个定义在
A
{\displaystyle {\mathcal {A}}}
上满足某些特别性质的函数
μ
{\displaystyle \mu }
,也就是测度,测度空间就由这三部分,
{\displaystyle }
,所构成。测度空间的一个实例是概率空间。
概率测度是概率空间中定义在一个事件集合上的、满足测度性质的实值函数。概率测度与一般意义上的测度的区别在于,概率测度之于整个概率空间的值必须等于1。
概率测度是概率空间中定义在一个事件集合上的、满足测度性质的实值函数。概率测度与一般意义上的测度的区别在于,概率测度之于整个概率空间的值必须等于1。
在概率论中,树形图是用来表示一个概率空间。
在概率论中,随机事件指的是一个被赋与几率的事物集合,也就是样本空间中的一个子集。简单来说,在一次随机试验中,某个特定事件可能出现也有可能不出现;但当试验次数增多,我们可以观察到某种规律性的结果,就是随机事件。基本上,只要样本空间是有限的,则在样本空间内的任何一个子集合,都可以被称为是一个事件。然而,当样本空间是无限的时候,特别是可数集之时,就常常不能定义所有的子集为随机事件了。因此,为了定义一个概率空间,常常需要去掉样本空间的某些子集,规定他们不能成为事件。
在概率论中,随机事件指的是一个被赋与几率的事物集合,也就是样本空间中的一个子集。简单来说,在一次随机试验中,某个特定事件可能出现也有可能不出现;但当试验次数增多,我们可以观察到某种规律性的结果,就是随机事件。基本上,只要样本空间是有限的,则在样本空间内的任何一个子集合,都可以被称为是一个事件。然而,当样本空间是无限的时候,特别是可数集之时,就常常不能定义所有的子集为随机事件了。因此,为了定义一个概率空间,常常需要去掉样本空间的某些子集,规定他们不能成为事件。
在概率论中,随机事件指的是一个被赋与几率的事物集合,也就是样本空间中的一个子集。简单来说,在一次随机试验中,某个特定事件可能出现也有可能不出现;但当试验次数增多,我们可以观察到某种规律性的结果,就是随机事件。基本上,只要样本空间是有限的,则在样本空间内的任何一个子集合,都可以被称为是一个事件。然而,当样本空间是无限的时候,特别是可数集之时,就常常不能定义所有的子集为随机事件了。因此,为了定义一个概率空间,常常需要去掉样本空间的某些子集,规定他们不能成为事件。