正五边形 编辑
几何学中,五边形是指有五条边和五个顶点多边形,其内角和为540
6
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
截半截角二十面体是一种凸集多面体,属于环带多面体,其对偶多面体为菱形九十面体。有92个面,其中有12个正五边形、20个等边六边形和60个等腰三角形组成。在截半截角二十面体92个面中,只有12个正多边形。
在几何学中,截角二十面体是一种由12个正五边形和20个正六边形所组成的凹凸性半正多面体,同时具有每个三面角等角和每条边等长的性质,因此属于阿基米德立体,但由于其并非所有面全等因此不能算是正多面体。由于其包含了正五边形和六边形面,因此也是一种戈德堡多面体,其对偶多面体为五角化十二面体。这种结构最早由列奥纳多·达·芬奇给予描述,后来出现于许多艺术创作和学术研究中。自1970年国际足协世界杯之后,这种形状成为了足球的代表性形状,并且会在六边形涂上白色、五边形涂上黑色。在科学领域中,这种形状亦有许多用途,例如建筑学家巴克明斯特·富勒提出的网格球顶结构,甚至在核子武器的引爆技术上也有使用这种形状的设计。巴克明斯特富勒烯分子也是这种形状。
在几何学中,截半大十二面体是一种星形均匀多面体,由12个正五边形和12个正五角星组成,可以视为大十二面体或小星形十二面体截去所有顶点所产生的形状。其对偶多面体为内侧菱形三十面体。在抽象理论中,截半大十二面体可以视为五种无法良好具像化的抽象正多面体被部分具象化的结果。截半大十二面体由3个学者独立发现,分别是埃德蒙·赫斯、芭杜欧和皮奇。
正十二面体是由12个正五边形所组成的正多面体,它共有20个顶点、30条棱、160条对角线,被施莱夫利符号{5,3}所表示,与正二十面体互成对偶多面体。它是一种只具有正四面体对称性的五角十二面体的特殊形式,五角十二面体的另一种特殊形式是具有正八面体对称性的卡塔兰多面体菱形十二面体,它都与正十二面体在拓扑上等价。正十二面体还是偏方面体的特例。其四维类比为正一百二十胞体。
在几何学中,扭棱十二面体是一种半正多面体,由正三角形和正五边形组成,由于其具有点可递的性质,因此属于阿基米德立体,也是面数最多的阿基米德立体,其对偶多面体为五角化六十面体。
在几何学中,小斜方截半二十面体是一种半正多面体,由于其具有点可递的性质,因此属于阿基米德立体。它由20个正三角形面、30个正方形面、12个正五边形面、60个顶点和120条棱构成。其对偶多面体为鸢形六十面体。
在几何学中,截半二十面体是一种由正五边形和正三角形组成的三十二面体,是一种阿基米德立体。其每个顶点都是2个三角形和2个五边形的公共顶点、每条棱都是三角形和五边形交棱,因此具有每个顶角相等和二面角相等的性质,因此截半二十面体是半正多面体也是拟正多面体。
在几何学中,截半二十面体是一种由正五边形和正三角形组成的三十二面体,是一种阿基米德立体。其每个顶点都是2个三角形和2个五边形的公共顶点、每条棱都是三角形和五边形交棱,因此具有每个顶角相等和二面角相等的性质,因此截半二十面体是半正多面体也是拟正多面体。
在几何学中,大十二面体又称为第二星形正十二面体,是一个由6对互相平行的正五边形组成的非凸正多面体,同时也是一种星形正多面体,其外形有如内有星形图案的正二十面体或每面内凹三角锥的正二十面体,是三种星形十二面体之一。其顶点的布局与正二十面体相同,但边的连结方式不同,因此可以视为正二十面体经过刻面后的多面体,对偶多面体为小星形十二面体。这个多面体被认为是由路易·庞索在1810年发现,虽然在温佐·雅姆尼策尔于1568年出版的著作《Perspectiva Corporum Regularium》中有一幅形状非常类似大十二面体的图画。1983年时,温尼尔在他的书《温尼尔多面体模型列表》中列出许多星形多面体模型,其中也收录了此种形状,并给予编号W21。
在几何学中,五角柱是一种多面体,是柱体的一种,是指底面是五边形的柱体。当它底面是正五边形时,则称为正五角柱,若一正五角柱侧面是正方形,则他就属于半正多面体或均匀多面体,因此有时称为半正七面体。