热力学系统 编辑
热力学系统是指用于热力学研究的有限宏观区域,是热力学的研究对象。它的外部空间被称为这个系统的环境。一个系统的边界将系统与它的外部隔开。这个边界既可以是真实存在的,也可以是假想出来的,但必须将这个系统限制在一个有限空间里。系统与其环境可以在边界进行物质,功,热或其它形式能量的传递。而热力学系统可以从它的边界所允许的传递类型进行分类。
2
相关
玻尔兹曼方程或玻尔兹曼输运方程是由路德维希·玻尔兹曼于1872年提出的一个方程,用于描述非热力学平衡状态热力学系统的统计行为。具有温度梯度的流体即为这类系统的一个经典的例子:构成流体的微粒在系统中通过随机而具有偏向性的运动让热能从较热的区域流向较冷的区域,而这一过程可用玻尔兹曼方程来描述。在现今的论文中,“玻尔兹曼方程”这个术语常被用于更一般的意义上,它可以是任何涉及描述热力学系统中宏观量的变化的动力学方程。
玻尔兹曼方程或玻尔兹曼输运方程是由路德维希·玻尔兹曼于1872年提出的一个方程,用于描述非热力学平衡状态热力学系统的统计行为。具有温度梯度的流体即为这类系统的一个经典的例子:构成流体的微粒在系统中通过随机而具有偏向性的运动让热能从较热的区域流向较冷的区域,而这一过程可用玻尔兹曼方程来描述。在现今的论文中,“玻尔兹曼方程”这个术语常被用于更一般的意义上,它可以是任何涉及描述热力学系统中宏观量的变化的动力学方程。
在热力学中, 热力学函数,或称热力学参数、状态函数,是描述热力学系统的宏观物理量。处于平衡状态的热力学系统,各宏观物理量具有确定的值,并且这些物理量仅由系统所处的状态所决定,与达到平衡态的过程无关。决定物质状态的物理量被称为状态函数。其中包含了“热力学势”,热力学势特指下面提到的四个具有能量量纲的热力学函数。
在热力学中, 热力学函数,或称热力学参数、状态函数,是描述热力学系统的宏观物理量。处于平衡状态的热力学系统,各宏观物理量具有确定的值,并且这些物理量仅由系统所处的状态所决定,与达到平衡态的过程无关。决定物质状态的物理量被称为状态函数。其中包含了“热力学势”,热力学势特指下面提到的四个具有能量量纲的热力学函数。
玻尔兹曼方程或玻尔兹曼输运方程是由路德维希·玻尔兹曼于1872年提出的一个方程,用于描述非热力学平衡状态热力学系统的统计行为。具有温度梯度的流体即为这类系统的一个经典的例子:构成流体的微粒在系统中通过随机而具有偏向性的运动让热能从较热的区域流向较冷的区域,而这一过程可用玻尔兹曼方程来描述。在现今的论文中,“玻尔兹曼方程”这个术语常被用于更一般的意义上,它可以是任何涉及描述热力学系统中宏观量的变化的动力学方程。
在热力学中,可逆过程是指热力学系统的某些属性能够在无能量损失或耗散的情形下通过无穷小的变化实现反转的热力学过程。如果这一过程是一个热力学循环,则这种循环称为可逆循环。由于这些变化都是无穷小的,热力学系统在整个过程中都处于热力学平衡。由于在理论上这种过程所需时间为无穷大,完全理论意义上的可逆过程在实际中是不可能实现的。不过,如果系统对所发生变化的反应速度远远大于变化本身,过程中微小的不可逆性则可以忽略,因而理论上经常把无摩擦的准静态过程看作可逆过程。在可逆循环中,系统和其外界环境在每一次循环结束时都保持完全相同的状态。
在热力学中,可逆过程是指热力学系统的某些属性能够在无能量损失或耗散的情形下通过无穷小的变化实现反转的热力学过程。如果这一过程是一个热力学循环,则这种循环称为可逆循环。由于这些变化都是无穷小的,热力学系统在整个过程中都处于热力学平衡。由于在理论上这种过程所需时间为无穷大,完全理论意义上的可逆过程在实际中是不可能实现的。不过,如果系统对所发生变化的反应速度远远大于变化本身,过程中微小的不可逆性则可以忽略,因而理论上经常把无摩擦的准静态过程看作可逆过程。在可逆循环中,系统和其外界环境在每一次循环结束时都保持完全相同的状态。