负数,在数学上指小于0的实数,如−2、−3.2和−807.5,与正数相对。负数本身是一个不可数的无限集合。这个集合在数学上通常用粗体R或
R
−
{\displaystyle \mathbb {R} ^{-}}
来表示。负数与0统称非正数。
负整数,在数学中是指小于0的整数。负整数是负数与整数的交集。和整数一样,负整数也是一个可数的无限集合。这个集合在数学上通常用粗体Z或
Z
−
{\displaystyle \mathbb {Z} ^{-}}
来表示。在任何大于0的自然数前面加上性质符号“-”,所得的数即为负整数,例如-1,-2,-3等。负整数可以被认为是自然数的扩展。负整数与0则统称为非正整数。
正数,在数学上是指大于0的实数,如1、3.7,1.5等,与负数相对。和实数一样,正数也是一个不可数的无限集合。这个集合在数学上通常用粗体R或ℝ来表示。正数与0统称非负数。
负数,在数学上指小于0的实数,如−2、−3.2和−807.5,与正数相对。负数本身是一个不可数的无限集合。这个集合在数学上通常用粗体R或
R
−
{\displaystyle \mathbb {R} ^{-}}
来表示。负数与0统称非正数。
整数,在电脑应用上也称为整数,是序列
{
…
,
−
4
,
−
3
,
−
2
,
−
1
,
0
,
1
,
2
,
3
,
4
,
…
}
{\displaystyle \{\ldots ,-4,-3,-2,-1,0,1,2,3,4,\ldots \}}
中所有的数的统称,包括负整数、0与正整数。和自然数一样,整数也是一个可数的无限集合。这个集合在数学上通常表示粗体
Z
{\displaystyle Z}
或
Z
{\displaystyle \mathbb {Z} }
,源于德语单词Zahlen的首字母。
负数,在数学上指小于0的实数,如−2、−3.2和−807.5,与正数相对。负数本身是一个不可数的无限集合。这个集合在数学上通常用粗体R或
R
−
{\displaystyle \mathbb {R} ^{-}}
来表示。负数与0统称非正数。
负整数,在数学中是指小于0的整数。负整数是负数与整数的交集。和整数一样,负整数也是一个可数的无限集合。这个集合在数学上通常用粗体Z或
Z
−
{\displaystyle \mathbb {Z} ^{-}}
来表示。在任何大于0的自然数前面加上性质符号“-”,所得的数即为负整数,例如-1,-2,-3等。负整数可以被认为是自然数的扩展。负整数与0则统称为非正整数。
负整数,在数学中是指小于0的整数。负整数是负数与整数的交集。和整数一样,负整数也是一个可数的无限集合。这个集合在数学上通常用粗体Z或
Z
−
{\displaystyle \mathbb {Z} ^{-}}
来表示。在任何大于0的自然数前面加上性质符号“-”,所得的数即为负整数,例如-1,-2,-3等。负整数可以被认为是自然数的扩展。负整数与0则统称为非正整数。
负整数,在数学中是指小于0的整数。负整数是负数与整数的交集。和整数一样,负整数也是一个可数的无限集合。这个集合在数学上通常用粗体Z或
Z
−
{\displaystyle \mathbb {Z} ^{-}}
来表示。在任何大于0的自然数前面加上性质符号“-”,所得的数即为负整数,例如-1,-2,-3等。负整数可以被认为是自然数的扩展。负整数与0则统称为非正整数。
负整数,在数学中是指小于0的整数。负整数是负数与整数的交集。和整数一样,负整数也是一个可数的无限集合。这个集合在数学上通常用粗体Z或
Z
−
{\displaystyle \mathbb {Z} ^{-}}
来表示。在任何大于0的自然数前面加上性质符号“-”,所得的数即为负整数,例如-1,-2,-3等。负整数可以被认为是自然数的扩展。负整数与0则统称为非正整数。