微分几何中,流形的余切丛是流形每点的余切空间组成的向量丛。余切空间有一个标准的辛形式,从中可以一个余切丛的非退化的体积形式。因此,本身作为一个流形的余切丛总是可定向的。可以在余切丛上定义一组特殊的坐标系;这些被称为正则坐标。因为余切丛可以视为辛流形,任何余切丛上的实函数总是可以解释为一个辛向量空间;这样余切丛可以理解为哈密顿力学讨论的相空间。
数学中的辛空间,可能指:辛流形或者辛向量空间,后者是前者的一个特例。
在线性代数当中,斜汉弥尔顿矩阵是一类与在辛向量空间上的反对称双线性映射相对应的矩阵。
微分几何中,流形的余切丛是流形每点的余切空间组成的向量丛。余切空间有一个标准的辛形式,从中可以一个余切丛的非退化的体积形式。因此,本身作为一个流形的余切丛总是可定向的。可以在余切丛上定义一组特殊的坐标系;这些被称为正则坐标。因为余切丛可以视为辛流形,任何余切丛上的实函数总是可以解释为一个辛向量空间;这样余切丛可以理解为哈密顿力学讨论的相空间。