限制 (数学) 编辑
数学上提及的映射的限制,指对于一个映射,不改变其对应关系而重新取其原定义域的子集为定义域的操作。同种概念可更一般地针对二元关系或多元关系等进行定义。
1
相关
康威十三进制函数,或简称为康威函数,是由英国数学家约翰·何顿·康威构造的一个实函数。康威函数满足强达布性质:它限制在任一非空开区间上的值域都是全体实数。作为推论,康威函数在实数上无处连续,但和连续函数一样也满足介值性。因此,康威函数可用来说明介值定理的逆命题不真,即一个函数有介值定理,并不代表它连续函数。
反余弦是一种反三角函数,也是高等数学中的一种基本特殊函数。在三角学中,反余弦被定义为一个角度,也就是余弦值的反函数,然而余弦函数是双射且不可逆的而不是一个对射函数,故无法有反函数,但我们可以限制其定义域,因此,反余弦是单射和满射也是反函数的,另外,我们也需要限制值域,且限制值域时,不能和反正弦定义相同的区间,因为这样会变成一对多,而不构成函数,所以我们将反余弦函数的值域定义在 ,




[

0
,
π

]



{\displaystyle \left[0,\pi \right]}

。另外,在原始的定义中,若输入值不在区间



[

1
,
1
]


{\displaystyle [-1,1]}

,是没有意义的,但是三角函数扩充到复数之后,若输入值不在区间



[

1
,
1
]


{\displaystyle [-1,1]}

,将传回复数。
反余弦是一种反三角函数,也是高等数学中的一种基本特殊函数。在三角学中,反余弦被定义为一个角度,也就是余弦值的反函数,然而余弦函数是双射且不可逆的而不是一个对射函数,故无法有反函数,但我们可以限制其定义域,因此,反余弦是单射和满射也是反函数的,另外,我们也需要限制值域,且限制值域时,不能和反正弦定义相同的区间,因为这样会变成一对多,而不构成函数,所以我们将反余弦函数的值域定义在 ,




[

0
,
π

]



{\displaystyle \left[0,\pi \right]}

。另外,在原始的定义中,若输入值不在区间



[

1
,
1
]


{\displaystyle [-1,1]}

,是没有意义的,但是三角函数扩充到复数之后,若输入值不在区间



[

1
,
1
]


{\displaystyle [-1,1]}

,将传回复数。
康威十三进制函数,或简称为康威函数,是由英国数学家约翰·何顿·康威构造的一个实函数。康威函数满足强达布性质:它限制在任一非空开区间上的值域都是全体实数。作为推论,康威函数在实数上无处连续,但和连续函数一样也满足介值性。因此,康威函数可用来说明介值定理的逆命题不真,即一个函数有介值定理,并不代表它连续函数。
康威十三进制函数,或简称为康威函数,是由英国数学家约翰·何顿·康威构造的一个实函数。康威函数满足强达布性质:它限制在任一非空开区间上的值域都是全体实数。作为推论,康威函数在实数上无处连续,但和连续函数一样也满足介值性。因此,康威函数可用来说明介值定理的逆命题不真,即一个函数有介值定理,并不代表它连续函数。
反余弦是一种反三角函数,也是高等数学中的一种基本特殊函数。在三角学中,反余弦被定义为一个角度,也就是余弦值的反函数,然而余弦函数是双射且不可逆的而不是一个对射函数,故无法有反函数,但我们可以限制其定义域,因此,反余弦是单射和满射也是反函数的,另外,我们也需要限制值域,且限制值域时,不能和反正弦定义相同的区间,因为这样会变成一对多,而不构成函数,所以我们将反余弦函数的值域定义在 ,




[

0
,
π

]



{\displaystyle \left[0,\pi \right]}

。另外,在原始的定义中,若输入值不在区间



[

1
,
1
]


{\displaystyle [-1,1]}

,是没有意义的,但是三角函数扩充到复数之后,若输入值不在区间



[

1
,
1
]


{\displaystyle [-1,1]}

,将传回复数。
康威十三进制函数,或简称为康威函数,是由英国数学家约翰·何顿·康威构造的一个实函数。康威函数满足强达布性质:它限制在任一非空开区间上的值域都是全体实数。作为推论,康威函数在实数上无处连续,但和连续函数一样也满足介值性。因此,康威函数可用来说明介值定理的逆命题不真,即一个函数有介值定理,并不代表它连续函数。