马可夫性质 编辑
马尔可夫性质是概率论中的一个概念,因为俄国数学家安德雷·马可夫得名。当一个随机过程在给定现在状态及所有过去状态情况下,其未来状态的条件概率分布仅依赖于当前状态;换句话说,在给定现在状态时,它与过去状态是条件独立的,那么此随机过程即具有马尔可夫性质。具有马尔可夫性质的过程通常称之为马尔可夫过程
3
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
马尔可夫链,又称离散时间马可夫链,因俄国数学家马尔可夫得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马可夫性质。马尔科夫链作为实际过程的统计模型具有许多应用。
马尔可夫链,又称离散时间马可夫链,因俄国数学家马尔可夫得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马可夫性质。马尔科夫链作为实际过程的统计模型具有许多应用。
马尔可夫链,又称离散时间马可夫链,因俄国数学家马尔可夫得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马可夫性质。马尔科夫链作为实际过程的统计模型具有许多应用。
马尔可夫链,又称离散时间马可夫链,因俄国数学家马尔可夫得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马可夫性质。马尔科夫链作为实际过程的统计模型具有许多应用。
在概率论及统计学中,马可夫过程是一个具备了马可夫性质的随机过程,因为俄国数学家安德雷·马可夫得名。马可夫过程是不具备记忆特质的。换言之,马可夫过程的条件概率仅仅与系统的当前状态相关,而与它的过去历史或未来状态,都是统计独立性、不相关的。
马尔可夫链,又称离散时间马可夫链,因俄国数学家马尔可夫得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马可夫性质。马尔科夫链作为实际过程的统计模型具有许多应用。
马尔可夫链,又称离散时间马可夫链,因俄国数学家马尔可夫得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马可夫性质。马尔科夫链作为实际过程的统计模型具有许多应用。
马尔可夫链,又称离散时间马可夫链,因俄国数学家马尔可夫得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马可夫性质。马尔科夫链作为实际过程的统计模型具有许多应用。