分量 编辑
向量 是数学物理学工程学等多个自然科学中的基本概念。指一个同时具有数值方向,且满足平行四边形法则的几何对象。理论数学中向量的定义为任何在向量空间中的元素。一般地,同时满足具有大小和方向两个性质的几何对象即可认为是向量。向量常常在以符号加箭头标示以区别于其它量。与向量相对的概念称标量、数量或纯量,即只有大小、绝大多数情况下没有方向、不满足平行四边形法则的量。
5
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
张量是一个可用来表示在一些向量、纯量和其他张量之间的线性关系的线性形式,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 



n


{\displaystyle n}

 维空间内,有 




n

r




{\displaystyle n^{r}}

分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。



r


{\displaystyle r}

称为该张量的秩或阶。
张量是一个可用来表示在一些向量、纯量和其他张量之间的线性关系的线性形式,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 



n


{\displaystyle n}

 维空间内,有 




n

r




{\displaystyle n^{r}}

分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。



r


{\displaystyle r}

称为该张量的秩或阶。
张量是一个可用来表示在一些向量、纯量和其他张量之间的线性关系的线性形式,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 



n


{\displaystyle n}

 维空间内,有 




n

r




{\displaystyle n^{r}}

分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。



r


{\displaystyle r}

称为该张量的秩或阶。
张量是一个可用来表示在一些向量、纯量和其他张量之间的线性关系的线性形式,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 



n


{\displaystyle n}

 维空间内,有 




n

r




{\displaystyle n^{r}}

分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。



r


{\displaystyle r}

称为该张量的秩或阶。
张量是一个可用来表示在一些向量、纯量和其他张量之间的线性关系的线性形式,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 



n


{\displaystyle n}

 维空间内,有 




n

r




{\displaystyle n^{r}}

分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。



r


{\displaystyle r}

称为该张量的秩或阶。
张量是一个可用来表示在一些向量、纯量和其他张量之间的线性关系的线性形式,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 



n


{\displaystyle n}

 维空间内,有 




n

r




{\displaystyle n^{r}}

分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。



r


{\displaystyle r}

称为该张量的秩或阶。
张量是一个可用来表示在一些向量、纯量和其他张量之间的线性关系的线性形式,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 



n


{\displaystyle n}

 维空间内,有 




n

r




{\displaystyle n^{r}}

分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。



r


{\displaystyle r}

称为该张量的秩或阶。