在几何学中,截角二十面体是一种由12个正五边形和20个正六边形所组成的凹凸性半正多面体,同时具有每个三面角等角和每条边等长的性质,因此属于阿基米德立体,但由于其并非所有面全等因此不能算是正多面体。由于其包含了正五边形和六边形面,因此也是一种戈德堡多面体,其对偶多面体为五角化十二面体。这种结构最早由列奥纳多·达·芬奇给予描述,后来出现于许多艺术创作和学术研究中。自1970年国际足协世界杯之后,这种形状成为了足球的代表性形状,并且会在六边形涂上白色、五边形涂上黑色。在科学领域中,这种形状亦有许多用途,例如建筑学家巴克明斯特·富勒提出的网格球顶结构,甚至在核子武器的引爆技术上也有使用这种形状的设计。巴克明斯特富勒烯分子也是这种形状。
在几何学中,小斜方截半立方体,又称为菱方八面体,是一种有18个正方形和8个正三角形的阿基米德立体。小斜方截半立方体共有26个面、48条边以及24个顶点,具有点可递性质,因此既是均匀多面体也是半正多面体。
在几何学中,截角立方体是一种十四面体,由八个正三角形与六个正八边形组成,具有14个面、24个顶点以及36条边。是一种阿基米德立体,属于半正多面体。其对偶多面体为三角化八面体。
卡塔兰立体是半正多面体的对偶多面体,都是凸多面体。1865年比利时数学家欧仁·查理·卡塔兰最先描述它们。
Johnson多面体,有译作多面体或庄逊多面体,是指正多面体、半正多面体、棱柱、反棱柱之外,所有由正多边形面组成的凸多面体。这些立体由诺曼·詹森在1966年命名;1969年,维克托·查加勒证明只有92个这样的立体。
Johnson多面体,有译作多面体或庄逊多面体,是指正多面体、半正多面体、棱柱、反棱柱之外,所有由正多边形面组成的凸多面体。这些立体由诺曼·詹森在1966年命名;1969年,维克托·查加勒证明只有92个这样的立体。
在几何学中,扭棱十二面体是一种半正多面体,由正三角形和正五边形组成,由于其具有点可递的性质,因此属于阿基米德立体,也是面数最多的阿基米德立体,其对偶多面体为五角化六十面体。
在几何学中,九面体是指由9个面组成的多面体,而边长全部等长的九面体是七角柱是一种半正多面体。在九面体中,正四角锥柱和它的对偶多面体都是九面体。
卡塔兰立体是半正多面体的对偶多面体,都是凸多面体。1865年比利时数学家欧仁·查理·卡塔兰最先描述它们。
阿基米德立体是一种高度对称的半正多面体,且使用两种或以上的正多边形为面的凸多面体,并且都是可以从正多面体经过截角、截半、截边等操作构造。阿基米德立体的每个顶点的情况相同,共有13种。阿基米德曾研究半正多面体,故有人将半正多面体唤作阿基米德立体。因为面是由正多边形组成的,每个相邻的正多边形的边长相等,故阿基米德立体的边均有相同长度。阿基米德立体的对偶多面体是卡塔兰立体。