双锥体 编辑
双锥体,或双棱锥、又称双角锥,是一种几何体,是由一锥体,经底面反射产生的几何变换和原本的锥体合成的立体,换句话说,双锥体就是将两个相同的锥体背对背、底面对底面黏起来。其也是柱体对偶多面体,将一柱体每面的重心当作新的顶点做成多面体也可得到双锥体。
8
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
在几何学中,双三角锥是一种基底为三角形的双锥体,其为三角柱的对偶。若每个面皆为正三角形,则为92种Johnson多面体中的其中一个,也是双角锥的其中一种。顾名思义,它可由正多面体中的两个大小相同的正四面体组合而成。这92种詹森多面体最早在1996年由詹森·诺曼命名并给予描述。
在几何学中,双三角锥是一种基底为三角形的双锥体,其为三角柱的对偶。若每个面皆为正三角形,则为92种Johnson多面体中的其中一个,也是双角锥的其中一种。顾名思义,它可由正多面体中的两个大小相同的正四面体组合而成。这92种詹森多面体最早在1996年由詹森·诺曼命名并给予描述。
在几何学中,双锥台又称双平截头体是指三个相似形的平形的平面图形如同锥体或柱体构造其侧面使图形封闭,通常中间的面最大,上下二个面等大,但较中间面小,或是指一个双锥体被两个平行平面,一个在赤道面上方、一个在赤道面下方所截后,位于两个平行平面之间的立体,或是可以看做是二个锥台以相同的底面相皆后所形成的几何图形,第三种者定义较广,包含凹双锥台,第二种者只包含凸双锥台,但也有上下不对称的双锥台。就如同锥台,双锥台也可以依据所截的是双圆锥还是双锥体,可分为双圆台与双棱台。
在几何学中,双圆锥是一种双锥体,是指基底为圆形的双锥体,其可以视为将二个底面全等的圆锥,底面对底面皆合起来的三维几何体,或是由二个全等的圆锥共同围出的空间。每个双圆锥皆由二个曲面所组成,具有一个曲边和二个顶点,由于组成面有曲面以及组成边为曲边,因此会导致其欧拉特征数不为二,其F-E+V=3。所有双圆锥都是广义的二面体的一种。
在几何学中,双三角锥是一种基底为三角形的双锥体,其为三角柱的对偶。若每个面皆为正三角形,则为92种Johnson多面体中的其中一个,也是双角锥的其中一种。顾名思义,它可由正多面体中的两个大小相同的正四面体组合而成。这92种詹森多面体最早在1996年由詹森·诺曼命名并给予描述。
在几何学中,双三角锥是一种基底为三角形的双锥体,其为三角柱的对偶。若每个面皆为正三角形,则为92种Johnson多面体中的其中一个,也是双角锥的其中一种。顾名思义,它可由正多面体中的两个大小相同的正四面体组合而成。这92种詹森多面体最早在1996年由詹森·诺曼命名并给予描述。
在几何学中,双三角锥是一种基底为三角形的双锥体,其为三角柱的对偶。若每个面皆为正三角形,则为92种Johnson多面体中的其中一个,也是双角锥的其中一种。顾名思义,它可由正多面体中的两个大小相同的正四面体组合而成。这92种詹森多面体最早在1996年由詹森·诺曼命名并给予描述。