扩张域 编辑
域扩张是数学分支抽象代数之域论中的主要研究对象,基本想法是从一个基开始以某种方式构造包含它的“更大”的域。域扩张可以推广为环扩张。
7
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
林德曼-魏尔斯特拉斯定理是一个可以用于证明实数的超越数的定理。它表明,如果




a

1


,

,

a

n




{\displaystyle a_{1},\ldots ,a_{n}}

 是代数数,在有理数 ℚ 内是线性独立的,那么




e


α

1




,

,

e


α

n






{\displaystyle e^{\alpha _{1}},\ldots ,e^{\alpha _{n}}}

在 ℚ 内是代数独立的;也就是说,扩张域




Q




{\displaystyle \mathbb {Q} }

在 ℚ 内具有超越次数 n。