在抽象几何学中,立方体半形是一种仅由一半数量的立方体面构成的抽象多面体。这个抽象多面体与立方体类似,它们的每个顶点都是3个正方形的公共顶点,然而立方体有6个面,而立方体半形仅有3个面;同时,这个立体无法嵌入在三维欧几里得空间中。在拓朴学上,其可以视为正四面体的皮特里对偶。
在抽象几何学中,立方体半形是一种仅由一半数量的立方体面构成的抽象多面体。这个抽象多面体与立方体类似,它们的每个顶点都是3个正方形的公共顶点,然而立方体有6个面,而立方体半形仅有3个面;同时,这个立体无法嵌入在三维欧几里得空间中。在拓朴学上,其可以视为正四面体的皮特里对偶。
在抽象几何学中,立方体半形是一种仅由一半数量的立方体面构成的抽象多面体。这个抽象多面体与立方体类似,它们的每个顶点都是3个正方形的公共顶点,然而立方体有6个面,而立方体半形仅有3个面;同时,这个立体无法嵌入在三维欧几里得空间中。在拓朴学上,其可以视为正四面体的皮特里对偶。
在抽象几何学中,立方体半形是一种仅由一半数量的立方体面构成的抽象多面体。这个抽象多面体与立方体类似,它们的每个顶点都是3个正方形的公共顶点,然而立方体有6个面,而立方体半形仅有3个面;同时,这个立体无法嵌入在三维欧几里得空间中。在拓朴学上,其可以视为正四面体的皮特里对偶。
在抽象几何学中,立方体半形是一种仅由一半数量的立方体面构成的抽象多面体。这个抽象多面体与立方体类似,它们的每个顶点都是3个正方形的公共顶点,然而立方体有6个面,而立方体半形仅有3个面;同时,这个立体无法嵌入在三维欧几里得空间中。在拓朴学上,其可以视为正四面体的皮特里对偶。
在抽象几何学中,立方体半形是一种仅由一半数量的立方体面构成的抽象多面体。这个抽象多面体与立方体类似,它们的每个顶点都是3个正方形的公共顶点,然而立方体有6个面,而立方体半形仅有3个面;同时,这个立体无法嵌入在三维欧几里得空间中。在拓朴学上,其可以视为正四面体的皮特里对偶。
在抽象几何学中,立方体半形是一种仅由一半数量的立方体面构成的抽象多面体。这个抽象多面体与立方体类似,它们的每个顶点都是3个正方形的公共顶点,然而立方体有6个面,而立方体半形仅有3个面;同时,这个立体无法嵌入在三维欧几里得空间中。在拓朴学上,其可以视为正四面体的皮特里对偶。