红外线天文学 编辑
红外天文学的主要研究对象是可以观测到红外线天体,是天文学和天文物理学的一个重要分支。可见光波长范围大约为400奈米至700奈米,波长比700奈米长但仍比微波短的电磁波称为红外线。红外天文学有时也视为可见光天文学的一部分,因为反射镜透镜等光学元件基本上都能用于红外观测
1
相关
超星团 是一个很大的恒星形成区域,被认为是球状星团的前身。它们通常包含大量被电离氢区环绕的金牛T星、OB 星,类似于我们银河系内的“超密电离氢区”。一个超星团的电离氢区像是被翻转出来的宇宙尘茧包围着。在许多情况下,恒星和电离氢区都因为高度的消光而在光学上是看不见的。结果是,越年轻的超星团越适合用射电天文学和红外线天文学观测。
类星体 是极度光度的活跃星系核。大多数星系的核心都有一个超大质量黑洞,它的质量从百万至数十亿太阳质量不等。在类星体和其它形式的活跃星系核,黑洞被气态的吸积盘环绕着。当吸积盘中的气体朝向黑洞墬落,能量就会以电磁辐射的形式释放出来。这些电磁辐射被观测到,发现电磁辐射可以跨越电波天文学、红外线天文学、可见光、紫外线天文学、X射线、和γ射线等电磁频谱的波长。类星体电磁辐射的功率非常巨大:最强大的类星体的光度超过10 瓦特,是普通星系,例如银河系,的数千倍。"类星体"这个名词源自于准恒星状电波源的缩写,因为在1950年代发现这种天体时,被认定为未知物理源的电波发射源,当在可见光的照相图中筛检出来时,它们类似可见光的星状微弱光点。类星体的高解析影像,特别是哈伯太空望远镜,已经证明类星体是发生在星系的中心,一些类星体的宿主星系是强烈的交互作用星系或星系合并中的星系。与其它类型的活跃星系核,类星体的观测性质取决于许多因素,包括黑洞的质量、气体的吸积率、吸积盘相对于观测者的方向、存在或没有喷流、和被气体和在宿主星系内宇宙尘的消光 程度。类星体存在的距离测量非常广泛,类星体发现的调查证明类星体的活动在遥远的过去更为常见。类星体活跃的高峰时期在宇宙对应于红移大约2,也就是100亿年前。截至2017年,发现已知最遥远的类星体是ULAS J1342+0928,红移z=7.54;观测从这个类星体发出的光,观测到当时的宇宙年龄只有6.9亿岁。这个类星体中的超大质量黑洞是迄今为止发现的最遥远黑洞。估计它的质量是我们的太阳的8亿倍。
近红外线照相机和多目标分光仪是在1997至1999年和2002年迄今,仍在哈伯太空望远镜上使用于红外线天文学的科学仪器。
近红外线照相机和多目标分光仪是在1997至1999年和2002年迄今,仍在哈伯太空望远镜上使用于红外线天文学的科学仪器。
莱曼断裂星系是利用星系在莱曼极限两侧波段的图像不同而发现的高红移的恒星形成星系。过去这种技术主要利用紫外线和可见光波段寻找红移值z=3-4的星系,但是随着紫外线天文学和红外线天文学的发展,我们已经可以在紫外和近红外波段寻找更低或更高红移的星系。
英澳望远镜是座落于澳洲1,100米高的山区,架设在赛丁泉天文台内,由澳洲天文台操作的一架口径3.9米,架台为赤道仪式的望远镜。它是由英国和澳洲共同出资建造的,为全球的天文学家提供可观测的时间。它装备了大量的工具,包括两度视场设备,可以在2°的视场内选择400个观测的天体,同时进行光谱观测的机器人光纤定位器;伦敦大学的Échelle光谱仪,一个高解析的光谱仪,曾经用他发现了许多的太阳系外行星;还有IRIS2,一个广角的红外线天文学照相机和光谱仪。
类星体 是极度光度的活跃星系核。大多数星系的核心都有一个超大质量黑洞,它的质量从百万至数十亿太阳质量不等。在类星体和其它形式的活跃星系核,黑洞被气态的吸积盘环绕着。当吸积盘中的气体朝向黑洞墬落,能量就会以电磁辐射的形式释放出来。这些电磁辐射被观测到,发现电磁辐射可以跨越电波天文学、红外线天文学、可见光、紫外线天文学、X射线、和γ射线等电磁频谱的波长。类星体电磁辐射的功率非常巨大:最强大的类星体的光度超过10 瓦特,是普通星系,例如银河系,的数千倍。"类星体"这个名词源自于准恒星状电波源的缩写,因为在1950年代发现这种天体时,被认定为未知物理源的电波发射源,当在可见光的照相图中筛检出来时,它们类似可见光的星状微弱光点。类星体的高解析影像,特别是哈伯太空望远镜,已经证明类星体是发生在星系的中心,一些类星体的宿主星系是强烈的交互作用星系或星系合并中的星系。与其它类型的活跃星系核,类星体的观测性质取决于许多因素,包括黑洞的质量、气体的吸积率、吸积盘相对于观测者的方向、存在或没有喷流、和被气体和在宿主星系内宇宙尘的消光 程度。类星体存在的距离测量非常广泛,类星体发现的调查证明类星体的活动在遥远的过去更为常见。类星体活跃的高峰时期在宇宙对应于红移大约2,也就是100亿年前。截至2017年,发现已知最遥远的类星体是ULAS J1342+0928,红移z=7.54;观测从这个类星体发出的光,观测到当时的宇宙年龄只有6.9亿岁。这个类星体中的超大质量黑洞是迄今为止发现的最遥远黑洞。估计它的质量是我们的太阳的8亿倍。
类星体 是极度光度的活跃星系核。大多数星系的核心都有一个超大质量黑洞,它的质量从百万至数十亿太阳质量不等。在类星体和其它形式的活跃星系核,黑洞被气态的吸积盘环绕着。当吸积盘中的气体朝向黑洞墬落,能量就会以电磁辐射的形式释放出来。这些电磁辐射被观测到,发现电磁辐射可以跨越电波天文学、红外线天文学、可见光、紫外线天文学、X射线、和γ射线等电磁频谱的波长。类星体电磁辐射的功率非常巨大:最强大的类星体的光度超过10 瓦特,是普通星系,例如银河系,的数千倍。"类星体"这个名词源自于准恒星状电波源的缩写,因为在1950年代发现这种天体时,被认定为未知物理源的电波发射源,当在可见光的照相图中筛检出来时,它们类似可见光的星状微弱光点。类星体的高解析影像,特别是哈伯太空望远镜,已经证明类星体是发生在星系的中心,一些类星体的宿主星系是强烈的交互作用星系或星系合并中的星系。与其它类型的活跃星系核,类星体的观测性质取决于许多因素,包括黑洞的质量、气体的吸积率、吸积盘相对于观测者的方向、存在或没有喷流、和被气体和在宿主星系内宇宙尘的消光 程度。类星体存在的距离测量非常广泛,类星体发现的调查证明类星体的活动在遥远的过去更为常见。类星体活跃的高峰时期在宇宙对应于红移大约2,也就是100亿年前。截至2017年,发现已知最遥远的类星体是ULAS J1342+0928,红移z=7.54;观测从这个类星体发出的光,观测到当时的宇宙年龄只有6.9亿岁。这个类星体中的超大质量黑洞是迄今为止发现的最遥远黑洞。估计它的质量是我们的太阳的8亿倍。
近红外线照相机和多目标分光仪是在1997至1999年和2002年迄今,仍在哈伯太空望远镜上使用于红外线天文学的科学仪器。
威廉·赫歇尔望远镜是一架口径 4.20米的光学/红外线天文学反射望远镜,座落在西班牙加那利群岛的拉帕尔马岛的穆查丘斯罗克天文台。这架望远镜已威廉·赫歇尔的名字命名,是牛顿望远镜群组的一部分。它的经费来自联合王国、荷兰和西班牙的研究理事会。