车辆路径问题是一个组合优化和整数规划问题。它概括了众所周知的旅行推销员问题。它最初出现在1959年乔治·伯纳德·丹齐格和John Ramser的论文中。这篇论文首先编写了算法,并将其应用于汽油交付。通常,这个问题的背景是将位于中央仓库的货物交付给已经订购此类货物的客户。 VRP的目标是最小化总路由成本。 1964年,Clarke和Wright使用一种称为储蓄算法的有效贪婪方法改进了Dantzig和Ramser的方法。
背包问题是一种组合优化的NP完全问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。问题的名称来源于如何选择最合适的物品放置于给定背包中,背包的空间有限,但我们需要最大化背包内所装物品的价值。背包问题通常出现在资源分配中,决策者必须分别从一组不可分割的项目或任务中进行选择,而这些项目又有时间或预算的限制。
旅行推销员问题是组合优化中的一个NP困难问题,在运筹学和理论计算机科学中非常重要。问题内容为“给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。”
旅行推销员问题是组合优化中的一个NP困难问题,在运筹学和理论计算机科学中非常重要。问题内容为“给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。”
匈牙利算法是一种在时间复杂度内求解任务分配问题的组合优化算法,并推动了后来的原始对偶方法。美国数学家哈罗德·库恩于1955年提出该算法。此算法之所以被称作匈牙利算法,是因为算法很大一部分是基于以前匈牙利数学家Dénes Kőnig和Jenő Egerváry的工作之上创建起来的。
分支切割法是用于解决线性规划问题,即部分或全部未知数为整数值的线性规划的问题的组合优化方法。该方法在分支定界法的基础上,使用切割平面以收紧线性规划松弛。如果切割平面仅用来收紧初始的 LP 松弛,则改称为切割分支法。
分支定界是用于离散优化、组合优化以及数学优化问题的算法设计范式。分支定界算法可以视为一种对可行解进行穷举的算法,但是和穷举法所不同的是,分支定界算法在对某一分支进行检索之前会先算出该分支的上界或下界,如果界限不比目前最佳解更好,那么该分支就会被舍弃,从而节约了大量的时间。分支定界算法非常依赖合适的上界或下界,如果无法找到合适的界限,该算法将会退化为穷举法。
旅行推销员问题是组合优化中的一个NP困难问题,在运筹学和理论计算机科学中非常重要。问题内容为“给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。”
旅行推销员问题是组合优化中的一个NP困难问题,在运筹学和理论计算机科学中非常重要。问题内容为“给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。”
旅行推销员问题是组合优化中的一个NP困难问题,在运筹学和理论计算机科学中非常重要。问题内容为“给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。”