波尔兹曼环形山,是位于月球正面月球南极区的一座大型古撞击坑,约形成于45.5-39.2亿年前的前酒海纪,其名称取自奥地利理论物理学、统计力学和分子运动论创始人路德维希·玻尔兹曼,1964年被国际天文学联合会批准接受。
麦克斯韦-玻尔兹曼分布是一个描述一定温度下微观粒子运动速度的概率分布,在物理学和化学中有应用。最常见的应用是统计力学的领域。任何物理系统的温度都是组成该系统的分子和原子的运动的结果。这些粒子有一个不同速度的范围,而任何单个粒子的速度都因与其它粒子的碰撞而不断变化。然而,对于大量粒子来说,处于一个特定的速度范围的粒子所占的比例却几乎不变,如果系统处于或接近处于平衡。麦克斯韦-玻尔兹曼分布具体说明了这个比例,对于任何速度范围,作为系统的温度的函数。它以詹姆斯·麦克斯韦和路德维希·玻尔兹曼命名。
玻尔兹曼方程或玻尔兹曼输运方程是由路德维希·玻尔兹曼于1872年提出的一个方程,用于描述非热力学平衡状态热力学系统的统计行为。具有温度梯度的流体即为这类系统的一个经典的例子:构成流体的微粒在系统中通过随机而具有偏向性的运动让热能从较热的区域流向较冷的区域,而这一过程可用玻尔兹曼方程来描述。在现今的论文中,“玻尔兹曼方程”这个术语常被用于更一般的意义上,它可以是任何涉及描述热力学系统中宏观量的变化的动力学方程。
麦克斯韦-玻尔兹曼分布是一个描述一定温度下微观粒子运动速度的概率分布,在物理学和化学中有应用。最常见的应用是统计力学的领域。任何物理系统的温度都是组成该系统的分子和原子的运动的结果。这些粒子有一个不同速度的范围,而任何单个粒子的速度都因与其它粒子的碰撞而不断变化。然而,对于大量粒子来说,处于一个特定的速度范围的粒子所占的比例却几乎不变,如果系统处于或接近处于平衡。麦克斯韦-玻尔兹曼分布具体说明了这个比例,对于任何速度范围,作为系统的温度的函数。它以詹姆斯·麦克斯韦和路德维希·玻尔兹曼命名。
H定理于1872年由路德维希·玻尔兹曼提出,在经典统计力学中描述物理量“H”在接近理想气体系统中的下降趋势,其中H这个积分数值代表分子随时间流逝因传递而改变的动能,个别分子的动能可于统计后成为一特定的分布。由于H可以用作定义热力学熵的一种表述,H定理是早期用来展现统计物理的威力。H定理可以从可逆微观机制推导出热力学第二定律。它被认为可以否证热力学第二定律。
麦克斯韦-玻尔兹曼分布是一个描述一定温度下微观粒子运动速度的概率分布,在物理学和化学中有应用。最常见的应用是统计力学的领域。任何物理系统的温度都是组成该系统的分子和原子的运动的结果。这些粒子有一个不同速度的范围,而任何单个粒子的速度都因与其它粒子的碰撞而不断变化。然而,对于大量粒子来说,处于一个特定的速度范围的粒子所占的比例却几乎不变,如果系统处于或接近处于平衡。麦克斯韦-玻尔兹曼分布具体说明了这个比例,对于任何速度范围,作为系统的温度的函数。它以詹姆斯·麦克斯韦和路德维希·玻尔兹曼命名。
玻尔兹曼方程或玻尔兹曼输运方程是由路德维希·玻尔兹曼于1872年提出的一个方程,用于描述非热力学平衡状态热力学系统的统计行为。具有温度梯度的流体即为这类系统的一个经典的例子:构成流体的微粒在系统中通过随机而具有偏向性的运动让热能从较热的区域流向较冷的区域,而这一过程可用玻尔兹曼方程来描述。在现今的论文中,“玻尔兹曼方程”这个术语常被用于更一般的意义上,它可以是任何涉及描述热力学系统中宏观量的变化的动力学方程。
在经典统计力学中,由鲁道夫·克劳修斯所早先提出的熵函数为引入概率论的统计熵;对统计熵之洞察,则于1870年由物理学家路德维希·玻尔兹曼的工作导出。
玻尔兹曼方程或玻尔兹曼输运方程是由路德维希·玻尔兹曼于1872年提出的一个方程,用于描述非热力学平衡状态热力学系统的统计行为。具有温度梯度的流体即为这类系统的一个经典的例子:构成流体的微粒在系统中通过随机而具有偏向性的运动让热能从较热的区域流向较冷的区域,而这一过程可用玻尔兹曼方程来描述。在现今的论文中,“玻尔兹曼方程”这个术语常被用于更一般的意义上,它可以是任何涉及描述热力学系统中宏观量的变化的动力学方程。
玻尔兹曼方程或玻尔兹曼输运方程是由路德维希·玻尔兹曼于1872年提出的一个方程,用于描述非热力学平衡状态热力学系统的统计行为。具有温度梯度的流体即为这类系统的一个经典的例子:构成流体的微粒在系统中通过随机而具有偏向性的运动让热能从较热的区域流向较冷的区域,而这一过程可用玻尔兹曼方程来描述。在现今的论文中,“玻尔兹曼方程”这个术语常被用于更一般的意义上,它可以是任何涉及描述热力学系统中宏观量的变化的动力学方程。