重力奇点 编辑
引力奇异点,也称时空奇异点或奇点,是一个体积无穷小、密度无限大、引力无限大、时空曲率无限大的,在这个点,目前所知的物理定律无法适用。例如黑洞的中心以及在大爆炸之前的初始奇点。
5
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
史瓦西半径是任何具有质量的物质都存在的一个临界半径特征值。在物理学和天文学中,尤其在万有引力理论、广义相对论中,它是一个非常重要的概念。1916年,德国天文学家卡尔·史瓦西首次发现史瓦西半径的存在,这个半径是一个球状对称、不自转又不带电荷的物体的重力场的精确解。该值的含义是,如果特定质量的物质被压缩到该半径值之内,将没有任何已知类型的力可以阻止该物质自身的重力将自己压缩成一个重力奇点
史瓦西半径是任何具有质量的物质都存在的一个临界半径特征值。在物理学和天文学中,尤其在万有引力理论、广义相对论中,它是一个非常重要的概念。1916年,德国天文学家卡尔·史瓦西首次发现史瓦西半径的存在,这个半径是一个球状对称、不自转又不带电荷的物体的重力场的精确解。该值的含义是,如果特定质量的物质被压缩到该半径值之内,将没有任何已知类型的力可以阻止该物质自身的重力将自己压缩成一个重力奇点
史瓦西半径是任何具有质量的物质都存在的一个临界半径特征值。在物理学和天文学中,尤其在万有引力理论、广义相对论中,它是一个非常重要的概念。1916年,德国天文学家卡尔·史瓦西首次发现史瓦西半径的存在,这个半径是一个球状对称、不自转又不带电荷的物体的重力场的精确解。该值的含义是,如果特定质量的物质被压缩到该半径值之内,将没有任何已知类型的力可以阻止该物质自身的重力将自己压缩成一个重力奇点
史瓦西半径是任何具有质量的物质都存在的一个临界半径特征值。在物理学和天文学中,尤其在万有引力理论、广义相对论中,它是一个非常重要的概念。1916年,德国天文学家卡尔·史瓦西首次发现史瓦西半径的存在,这个半径是一个球状对称、不自转又不带电荷的物体的重力场的精确解。该值的含义是,如果特定质量的物质被压缩到该半径值之内,将没有任何已知类型的力可以阻止该物质自身的重力将自己压缩成一个重力奇点