上同调 编辑
数学中,特别是同调论代数拓扑,余调是一个专有名词,表示由与拓扑空间相关的阿贝尔群组成的序列,经常由链复形定义。余调可以被视为一个给予空间更丰富的代数不变量的方式。余调的某些版本是经由将同调的建构对偶化而产生的。换言之,余链是同调论中的链组成的群上的函数。
5
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
数学上,德拉姆上同调是同时属于代数拓扑和微分拓扑的工具。它能够以一种特别适合计算和用具体的上同调类的方式表达关于光滑流形的基本拓扑信息。它是基于有特定属性的微分形式的存在性的上同调理论。它以不同的确定的意义对偶于奇异同调,以及亚历山大-斯潘尼尔上同调。
数学上,德拉姆上同调是同时属于代数拓扑和微分拓扑的工具。它能够以一种特别适合计算和用具体的上同调类的方式表达关于光滑流形的基本拓扑信息。它是基于有特定属性的微分形式的存在性的上同调理论。它以不同的确定的意义对偶于奇异同调,以及亚历山大-斯潘尼尔上同调。
在数学中,阻碍理论是两个不同数学理论的名字,两者都导出了上同调不变量。
在数学中,阻碍理论是两个不同数学理论的名字,两者都导出了上同调不变量。
数学上,德拉姆上同调是同时属于代数拓扑和微分拓扑的工具。它能够以一种特别适合计算和用具体的上同调类的方式表达关于光滑流形的基本拓扑信息。它是基于有特定属性的微分形式的存在性的上同调理论。它以不同的确定的意义对偶于奇异同调,以及亚历山大-斯潘尼尔上同调。
数学上,德拉姆上同调是同时属于代数拓扑和微分拓扑的工具。它能够以一种特别适合计算和用具体的上同调类的方式表达关于光滑流形的基本拓扑信息。它是基于有特定属性的微分形式的存在性的上同调理论。它以不同的确定的意义对偶于奇异同调,以及亚历山大-斯潘尼尔上同调。
数学上,德拉姆上同调是同时属于代数拓扑和微分拓扑的工具。它能够以一种特别适合计算和用具体的上同调类的方式表达关于光滑流形的基本拓扑信息。它是基于有特定属性的微分形式的存在性的上同调理论。它以不同的确定的意义对偶于奇异同调,以及亚历山大-斯潘尼尔上同调。