代数方程是未知数和常数进行有限次代数运算所组成的方程。代数方程包括有理方程和无理方程。有理方程又包括整式方程与分式方程。
表示论是数学中抽象代数的一支。旨在将抽象代数代数结构中的元素“表示”成向量空间上的线性变换,并研究这些代数结构上的模,藉以研究结构的性质。略言之,表示论将一代数对象表作较具体的矩阵,并使得原结构中的代数运算对应到矩阵加法和矩阵乘法。此法可施于群、结合代数及李代数等多种代数结构;其中肇源最早,用途也最广的是群表示论。设
G
{\displaystyle G}
为群,其在域
F
{\displaystyle F}
表示是一
F
{\displaystyle F}
-矢量空间
V
{\displaystyle V}
及映至一般线性群之群同态
表示论是数学中抽象代数的一支。旨在将抽象代数代数结构中的元素“表示”成向量空间上的线性变换,并研究这些代数结构上的模,藉以研究结构的性质。略言之,表示论将一代数对象表作较具体的矩阵,并使得原结构中的代数运算对应到矩阵加法和矩阵乘法。此法可施于群、结合代数及李代数等多种代数结构;其中肇源最早,用途也最广的是群表示论。设
G
{\displaystyle G}
为群,其在域
F
{\displaystyle F}
表示是一
F
{\displaystyle F}
-矢量空间
V
{\displaystyle V}
及映至一般线性群之群同态
表示论是数学中抽象代数的一支。旨在将抽象代数代数结构中的元素“表示”成向量空间上的线性变换,并研究这些代数结构上的模,藉以研究结构的性质。略言之,表示论将一代数对象表作较具体的矩阵,并使得原结构中的代数运算对应到矩阵加法和矩阵乘法。此法可施于群、结合代数及李代数等多种代数结构;其中肇源最早,用途也最广的是群表示论。设
G
{\displaystyle G}
为群,其在域
F
{\displaystyle F}
表示是一
F
{\displaystyle F}
-矢量空间
V
{\displaystyle V}
及映至一般线性群之群同态
代数方程是未知数和常数进行有限次代数运算所组成的方程。代数方程包括有理方程和无理方程。有理方程又包括整式方程与分式方程。