双射 编辑
数学中,一个由集合



X


{\displaystyle X}

映射至集合



Y


{\displaystyle Y}

函数,若对每一在



Y


{\displaystyle Y}

内的



y


{\displaystyle y}

,存在唯一一个在



X


{\displaystyle X}

内的



x


{\displaystyle x}

与其对应,且对每一在



X


{\displaystyle X}

内的



x


{\displaystyle x}

,存在唯一一个在



Y


{\displaystyle Y}

内的



y


{\displaystyle y}

与其对应,则此函数为对射函数。
2
相关
势,也称浓度在数学里是指如果存在着从集合A到集合B的双射,那么集合A与集合B等势,记为A~B。一个有限集的元素个数是一个自然数,势标志着该集合的大小。对于有限集,势为其元素的数量。比较无穷集里元素的多寡之方法,可在集合论里用集合的等势和某集合的势比另一个集合大这两个概念来达到目的。
数学上,空间对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:群的每个元素作为一个双射作用在某个集合上。在这个情况下,群称为置换群或者变换群。一个群G的置换表示是群作为一个集合的置换群的群表示,并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。
不可数集是无穷集合中的一种。一个无穷集合和自然数集之间要是不存在一个双射,那么它就是一个不可数集。集合的不可数性与它的基数密切相关:如果一个集合的基数大于自然数的基数,那么它就是不可数的。
施罗德-伯恩斯坦定理,又称康托尔-伯恩斯坦-施罗德定理是公理化集合论中的一个基本定理,得名于康托尔、费利克斯·伯恩斯坦和施罗德。该定理陈述说:如果在集合 A 和 B 之间存在单射 f : A → B 和 g : B → A,则存在一个双射 h : A → B。从势的角度来看, 这意味着如果 |A| ≤ |B| 并且 |B| ≤ |A|,则 |A| = |B|,即A与B等势。显然,这是在基数排序中非常有用的特征。
数学上,空间对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:群的每个元素作为一个双射作用在某个集合上。在这个情况下,群称为置换群或者变换群。一个群G的置换表示是群作为一个集合的置换群的群表示,并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。
反正弦是一种反三角函数。在三角学中,反正弦被定义为正弦值的反函数。在实数内,正弦函数不是一个双射函数,故在整个定义域上无法有单值的反函数;但若限定定义域在




[




π
2


+
k
π
,


π
2


+
k
π

]



{\displaystyle \left[-{\frac {\pi }{2}}+k\pi ,{\frac {\pi }{2}}+k\pi \right]}

内,则正弦函数有反函数。在实数域内,通常将反正弦函数的定义域限制在区间




[




π
2


,


π
2



]



{\displaystyle \left[-{\frac {\pi }{2}},{\frac {\pi }{2}}\right]}

中;若利用自然对数,则可将反正弦函数的定义域扩充至整个复数,但这样一来反正弦函数也将变成多值函数。
势,也称浓度在数学里是指如果存在着从集合A到集合B的双射,那么集合A与集合B等势,记为A~B。一个有限集的元素个数是一个自然数,势标志着该集合的大小。对于有限集,势为其元素的数量。比较无穷集里元素的多寡之方法,可在集合论里用集合的等势和某集合的势比另一个集合大这两个概念来达到目的。
势,也称浓度在数学里是指如果存在着从集合A到集合B的双射,那么集合A与集合B等势,记为A~B。一个有限集的元素个数是一个自然数,势标志着该集合的大小。对于有限集,势为其元素的数量。比较无穷集里元素的多寡之方法,可在集合论里用集合的等势和某集合的势比另一个集合大这两个概念来达到目的。
数学上,空间对称群描述物体的所有对称性。这是通过群作用的概念来形式化的:群的每个元素作为一个双射作用在某个集合上。在这个情况下,群称为置换群或者变换群。一个群G的置换表示是群作为一个集合的置换群的群表示,并且可以表述为置换矩阵,一般在有限的情形作此考虑-这和作用在有序的线性空间基上是一样的。
双射法是组合数学中的一种重要的数学证明方法,用来证明两个有限集合A和B的元素数目相等。证明的思路是构造一个双射映射f : A → B,于是根据双射的性质,A和B的元素数目就是相等的。这个证明是构造法证明的一种。由于双射法是给出具体的映射构造,而不是分别点算两个集合,所以不需要知道两个集合的元素个数。这种证明可以用于难以直接对两个集合或其中一个集合进行计数的情况。此外,双射法也可以用来计算一个集合,方法是将它映射到一个可以拆分或比较容易计算的集合。而作为构造性证明,双射法用到的f也许可以用来更深刻地分析集合本身的性质。