域扩张 编辑
域扩张是数学分支抽象代数之域论中的主要研究对象,基本想法是从一个基开始以某种方式构造包含它的“更大”的域。域扩张可以推广为环扩张。
8
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
代数扩张是抽象代数中域扩张的一类。一个域扩张L/K被称作代数扩张,当且仅当L中的每个元素都是某个以K中元素为系数的非零多项式的根。反之则称之为超越扩张。最简单的代数扩张例子有:




C


/


R



{\displaystyle \mathbb {C} /\mathbb {R} }






Q



/


Q



{\displaystyle \mathbb {Q} /\mathbb {Q} }

伽罗瓦扩张是抽象代数中伽罗瓦理论的核心概念之一。伽罗瓦扩张是体域扩张的一类。如果某个域扩张L/K既是可分扩张也是正规扩张,则称其为伽罗瓦扩张。另一个等价的定义是:伽罗瓦扩张是使得其上的环同态自同构群的固定域为其基域的域扩张。伽罗瓦扩张上的自同构群称为伽罗瓦群,而且伽罗瓦扩张的中间域与其伽罗瓦群的子群之间的关系满足伽罗瓦理论基本定理。
伽罗瓦群是抽象代数中域论的概念,表示与某个类型的域扩张相伴的群,是伽罗瓦理论的基础概念。域扩张源于多项式。通过伽罗瓦群研究域扩张以及多项式的理论,称为伽罗瓦理论,是十九世纪法国数学家埃瓦里斯特·伽罗瓦为了解决“高次多项式方程是否有根式解”的问题而创造的。后世也以他的名字命名相关的概念。
伽罗瓦理论基本定理是抽象代数中的定理,通过群的概念来描述特定域扩张的细致结构。定理说明了,如果某个域扩张L/K是域扩张伽罗瓦扩张,则此扩张的伽罗瓦群的子群与其中间域之间有双射关系。
可分扩张是抽象代数之域扩张理论中的概念。如果一个代数扩张L/K满足:任何一个L中元素在基体K上的极小多项式都是可分多项式,那么这个扩张就称作可分扩张。由于特征为0的域以及有限域都是完美域,任何这些域上的代数扩张都是可分扩张,因此可分扩张在域论研究中十分重要。可分扩张还是伽罗瓦扩张的条件之一,因此它在伽罗瓦理论中也扮演了重要的角色。
正规扩张是抽象代数中的概念,属于域扩张中的一类。一个有限扩张L/K是正规扩张当且仅当扩域L是多项式环K[X]中的某个多项式的分裂域。布尔巴基学派将这类扩张称为“准伽罗瓦扩张”。正规扩张是代数扩张的一种。
单扩张是由一个元素生成的域扩张,也是最简单的域扩张,记作F。新的域是原域加上新元素而成的最小域。
整性是交换代数中的概念,用于描述在有理数体的某些域扩张中,某些元素是否有类似于整数的性质。元素的整性本质上只依赖于环的概念。整性与环的整扩张推广了代数数与代数扩张的概念。
可分扩张是抽象代数之域扩张理论中的概念。如果一个代数扩张L/K满足:任何一个L中元素在基体K上的极小多项式都是可分多项式,那么这个扩张就称作可分扩张。由于特征为0的域以及有限域都是完美域,任何这些域上的代数扩张都是可分扩张,因此可分扩张在域论研究中十分重要。可分扩张还是伽罗瓦扩张的条件之一,因此它在伽罗瓦理论中也扮演了重要的角色。