塞曼效应,在原子物理学和化学中的光谱学里是指原子的光谱在外磁场中出现分裂的现象,是1896年由荷兰物理学家彼得·塞曼发现的,随后荷兰物理学家亨德里克·洛伦兹在理论上解释了谱线分裂成3条的原因。这种现象称为“塞曼效应”。进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。完整解释塞曼效应需要用到量子力学,电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。塞曼效应是继1845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。塞曼效应也在核磁共振频谱学、电子自旋共振频谱学、磁振造影以及穆斯堡尔谱学方面有重要的应用。
亨德里克·安东·洛伦兹,荷兰物理学家,曾与彼得·塞曼共同获得1902年诺贝尔物理学奖,并于1881年当选荷兰皇家艺术与科学学院院士,同时还曾担任多国科学院外籍院士。
亨德里克·安东·洛伦兹,荷兰物理学家,曾与彼得·塞曼共同获得1902年诺贝尔物理学奖,并于1881年当选荷兰皇家艺术与科学学院院士,同时还曾担任多国科学院外籍院士。
亨德里克·安东·洛伦兹,荷兰物理学家,曾与彼得·塞曼共同获得1902年诺贝尔物理学奖,并于1881年当选荷兰皇家艺术与科学学院院士,同时还曾担任多国科学院外籍院士。
亨德里克·安东·洛伦兹,荷兰物理学家,曾与彼得·塞曼共同获得1902年诺贝尔物理学奖,并于1881年当选荷兰皇家艺术与科学学院院士,同时还曾担任多国科学院外籍院士。
塞曼效应,在原子物理学和化学中的光谱学里是指原子的光谱在外磁场中出现分裂的现象,是1896年由荷兰物理学家彼得·塞曼发现的,随后荷兰物理学家亨德里克·洛伦兹在理论上解释了谱线分裂成3条的原因。这种现象称为“塞曼效应”。进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。完整解释塞曼效应需要用到量子力学,电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。塞曼效应是继1845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。塞曼效应也在核磁共振频谱学、电子自旋共振频谱学、磁振造影以及穆斯堡尔谱学方面有重要的应用。
亨德里克·安东·洛伦兹,荷兰物理学家,曾与彼得·塞曼共同获得1902年诺贝尔物理学奖,并于1881年当选荷兰皇家艺术与科学学院院士,同时还曾担任多国科学院外籍院士。
塞曼效应,在原子物理学和化学中的光谱学里是指原子的光谱在外磁场中出现分裂的现象,是1896年由荷兰物理学家彼得·塞曼发现的,随后荷兰物理学家亨德里克·洛伦兹在理论上解释了谱线分裂成3条的原因。这种现象称为“塞曼效应”。进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。完整解释塞曼效应需要用到量子力学,电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。塞曼效应是继1845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。塞曼效应也在核磁共振频谱学、电子自旋共振频谱学、磁振造影以及穆斯堡尔谱学方面有重要的应用。
亨德里克·安东·洛伦兹,荷兰物理学家,曾与彼得·塞曼共同获得1902年诺贝尔物理学奖,并于1881年当选荷兰皇家艺术与科学学院院士,同时还曾担任多国科学院外籍院士。
亨德里克·安东·洛伦兹,荷兰物理学家,曾与彼得·塞曼共同获得1902年诺贝尔物理学奖,并于1881年当选荷兰皇家艺术与科学学院院士,同时还曾担任多国科学院外籍院士。