几何数论 编辑
数论中,几何数论研究凸体和在n空间整数点向量问题。几何数论于1910由赫尔曼·闵可夫斯基创立。几何数论和数学其它领域有密切的关系,尤其研究在泛函分析丢番图逼近中,对有理数无理数逼近问题。
5
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
在数论中,堆垒数论也称为堆叠数论或加性数论,研究整数的子集合,以及其在加法下的特性。堆垒数论的领域也包括对于有加法的阿贝尔群及交换半群的研究。堆垒数论和组合数论及几何数论有密切的关系。其中主要研究的二个物件分别是阿贝尔群G中二个子集A及B的和集
在数论中,堆垒数论也称为堆叠数论或加性数论,研究整数的子集合,以及其在加法下的特性。堆垒数论的领域也包括对于有加法的阿贝尔群及交换半群的研究。堆垒数论和组合数论及几何数论有密切的关系。其中主要研究的二个物件分别是阿贝尔群G中二个子集A及B的和集
克劳德·安布罗斯·罗杰斯,英国数学家,伦敦大学学院荣誉教授,主要从事泛函分析和几何数论的研究。皇家学会院士。
在数论中,堆垒数论也称为堆叠数论或加性数论,研究整数的子集合,以及其在加法下的特性。堆垒数论的领域也包括对于有加法的阿贝尔群及交换半群的研究。堆垒数论和组合数论及几何数论有密切的关系。其中主要研究的二个物件分别是阿贝尔群G中二个子集A及B的和集
在数论中,堆垒数论也称为堆叠数论或加性数论,研究整数的子集合,以及其在加法下的特性。堆垒数论的领域也包括对于有加法的阿贝尔群及交换半群的研究。堆垒数论和组合数论及几何数论有密切的关系。其中主要研究的二个物件分别是阿贝尔群G中二个子集A及B的和集