泛函分析 编辑
泛函分析是现代数学分析的一个分支,隶属于分析学,其研究的主要对象是函数构成的函数空间。泛函分析历史根源是由对函数空间的研究和对函数的变换的性质的研究。这种观点被证明是对微分方程积分方程的研究中特别有用。
7
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
内积空间是数学中的线性代数里的基本概念,是增添了一个额外的结构的向量空间。这个额外的结构叫做内积或标量积。内积将一对向量与一个标量连接起来,允许我们严格地谈论向量的“角”和“长度”,并进一步谈论向量的正交。内积空间由欧几里得空间抽象而来,这是泛函分析讨论的课题。
量子力学的数学表述是对量子力学进行严谨描述的数学表述体系。与20世纪初发展起来的旧量子论的数学形式不同,它使用了一些抽象的代数结构,如无穷维希尔伯特空间和这些空间上的线性映射。这些结构中有许多源于泛函分析。这一纯粹数学研究领域的发展过程既平行于又受影响于量子力学的需要。简而言之,物理可观察量的值,如能量和动量的值不再作为相空间上的函数值,而是作为特征向量,或者更为精确地来说是希尔伯特空间中线性算子的谱值。
泛函指以函数构成的向量空间为定义域,实数为值域为的“函数”,即某一个依赖于其它一个或者几个函数确定其值的量,往往被称为“函数的函数”。在泛函分析中,泛函也用来指一个从任意向量空间到标量域的映射。泛函中的一类特例线性泛函引发了对对偶空间的研究。泛函的应用可以追溯到变分法,其中通常需要寻找一个函数用来最小化某个特定泛函。在物理学上,寻找某个能量泛函的最小系统状态是泛函的一个重要应用。
贝尔纲定理是点集拓扑学和泛函分析中的一个重要的工具。这个定理有两种形式,每一个都给出了拓扑空间是贝尔空间的充分条件。
特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塞尔函数、菲涅耳积分等。它们在数学分析、泛函分析、物理、工程学中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。因为微分方程的对称性在数学和物理中的重要性,特殊函数理论也与李群和李代数密切相关。
费利克斯·豪斯多夫,德国数学家。他是拓扑学的创始人之一,并且对集合论和泛函分析都贡献不少。他定义和研究偏序集、豪斯多夫空间和豪斯多夫维,证明豪斯多夫极大定理。他以笔名Paul Mongré出版哲学和文学作品。
泛函分析中,卷积,是透过两个函数 f 和 g 生成第三个函数的一种数学算子,表征函数 f 与经过翻转和平移的 g 的乘积函数所围成的曲边梯形的面积。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。
曾远荣,数学家,中国泛函分析研究的先驱者之一。四川南溪县人。
费利克斯·豪斯多夫,德国数学家。他是拓扑学的创始人之一,并且对集合论和泛函分析都贡献不少。他定义和研究偏序集、豪斯多夫空间和豪斯多夫维,证明豪斯多夫极大定理。他以笔名Paul Mongré出版哲学和文学作品。
范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,是一个函数,其为向量空间内的所有向量赋予非零的正长度或大小。另一方面,半范数可以为非零的向量赋予零长度。