群表示论 编辑
群论中,群表示论是一个非常重要的理论。它包含了拓扑群李群李代数群概形的表示等种种分支,近来无限维表示理论也渐露头角。表示理论在量子物理与数学的各领域中均有重要应用。
1
相关
在数学中,杨表,又称杨氏矩阵,是组合表示理论和舒伯特演算领域的常用工具。在对称群和一般线性群性质的研究中,杨表提供了一个方便的方式来描述的它们的群表示论。杨表由剑桥大学数学家阿尔弗雷德·杨 在 1900 年提出。接着于 1903 年被弗罗贝尼乌斯应用于对称群的研究中。他们的理论由许多数学家进一步发展,包括珀西·麦克马洪、威廉·瓦伦斯·道格拉斯·霍奇、G. de B. Robinson、吉安-卡洛·罗塔、Alain Lascoux、Marcel-Paul Schützenberger 和理查德·P·史丹利 等。
超复数是复数在抽象代数中的引申,通常是实数域上某个有限维的单位代数的元素。19世纪后期对超复数的研究,成为现代群表示论的根基。
此种代数举例如下:
数学上,诱导特征标是指由一个有限群 G 的子群 H ≤ G 的群表示论 W 诱导得到的 G 的表示V 的特征标。一般地,也有H 上的类函数f 的诱导类函数



Ind




{\displaystyle \operatorname {Ind} }

,由下面的公式给出:
表示论是数学中抽象代数的一支。旨在将抽象代数代数结构中的元素“表示”成向量空间上的线性变换,并研究这些代数结构上的模,藉以研究结构的性质。略言之,表示论将一代数对象表作较具体的矩阵,并使得原结构中的代数运算对应到矩阵加法和矩阵乘法。此法可施于群、结合代数及李代数等多种代数结构;其中肇源最早,用途也最广的是群表示论。设



G


{\displaystyle G}

为群,其在域



F


{\displaystyle F}

表示是一



F


{\displaystyle F}

-矢量空间



V


{\displaystyle V}

及映至一般线性群之群同态
表示论是数学中抽象代数的一支。旨在将抽象代数代数结构中的元素“表示”成向量空间上的线性变换,并研究这些代数结构上的模,藉以研究结构的性质。略言之,表示论将一代数对象表作较具体的矩阵,并使得原结构中的代数运算对应到矩阵加法和矩阵乘法。此法可施于群、结合代数及李代数等多种代数结构;其中肇源最早,用途也最广的是群表示论。设



G


{\displaystyle G}

为群,其在域



F


{\displaystyle F}

表示是一



F


{\displaystyle F}

-矢量空间



V


{\displaystyle V}

及映至一般线性群之群同态
表示论是数学中抽象代数的一支。旨在将抽象代数代数结构中的元素“表示”成向量空间上的线性变换,并研究这些代数结构上的模,藉以研究结构的性质。略言之,表示论将一代数对象表作较具体的矩阵,并使得原结构中的代数运算对应到矩阵加法和矩阵乘法。此法可施于群、结合代数及李代数等多种代数结构;其中肇源最早,用途也最广的是群表示论。设



G


{\displaystyle G}

为群,其在域



F


{\displaystyle F}

表示是一



F


{\displaystyle F}

-矢量空间



V


{\displaystyle V}

及映至一般线性群之群同态
在数学中,紧群是其拓扑学为紧致的的拓扑群。紧群是带有离散拓扑的有限群的自然推广,并以显著方式延续了一些性质。紧群的理论已被人们深入研究,与群作用和群表示论有关。
在数学中,紧群是其拓扑学为紧致的的拓扑群。紧群是带有离散拓扑的有限群的自然推广,并以显著方式延续了一些性质。紧群的理论已被人们深入研究,与群作用和群表示论有关。
在数学中,紧群是其拓扑学为紧致的的拓扑群。紧群是带有离散拓扑的有限群的自然推广,并以显著方式延续了一些性质。紧群的理论已被人们深入研究,与群作用和群表示论有关。
在数学中,杨表,又称杨氏矩阵,是组合表示理论和舒伯特演算领域的常用工具。在对称群和一般线性群性质的研究中,杨表提供了一个方便的方式来描述的它们的群表示论。杨表由剑桥大学数学家阿尔弗雷德·杨 在 1900 年提出。接着于 1903 年被弗罗贝尼乌斯应用于对称群的研究中。他们的理论由许多数学家进一步发展,包括珀西·麦克马洪、威廉·瓦伦斯·道格拉斯·霍奇、G. de B. Robinson、吉安-卡洛·罗塔、Alain Lascoux、Marcel-Paul Schützenberger 和理查德·P·史丹利 等。