几率论是集中研究概率及随机现象的数学分支,是研究随机性或不确定性等现象的数学。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及轮盘等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数法则和中心极限定理。
几率,旧称几率,又称、机会率或或然率,是对随机事件发生之可能性的度量,为数学概率论的基本概念;几率的值是一个在0到1之间的实数,也常以百分数来表示。
几率,旧称几率,又称、机会率或或然率,是对随机事件发生之可能性的度量,为数学概率论的基本概念;几率的值是一个在0到1之间的实数,也常以百分数来表示。
几率论是集中研究概率及随机现象的数学分支,是研究随机性或不确定性等现象的数学。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及轮盘等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数法则和中心极限定理。
几率,旧称几率,又称、机会率或或然率,是对随机事件发生之可能性的度量,为数学概率论的基本概念;几率的值是一个在0到1之间的实数,也常以百分数来表示。
几率论是集中研究概率及随机现象的数学分支,是研究随机性或不确定性等现象的数学。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及轮盘等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数法则和中心极限定理。
在贝叶斯统计中,一个随机事件或者一个不确定事件的后验概率是在考虑和给出相关证据或数据后所得到的条件概率。同样,后验概率分布是一个未知量基于试验和调查后得到的概率分布。“后验”在本文中代表考虑了被测试事件的相关证据。
在贝叶斯统计中,一个随机事件或者一个不确定事件的后验概率是在考虑和给出相关证据或数据后所得到的条件概率。同样,后验概率分布是一个未知量基于试验和调查后得到的概率分布。“后验”在本文中代表考虑了被测试事件的相关证据。
几率论是集中研究概率及随机现象的数学分支,是研究随机性或不确定性等现象的数学。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及轮盘等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数法则和中心极限定理。
几率,旧称几率,又称、机会率或或然率,是对随机事件发生之可能性的度量,为数学概率论的基本概念;几率的值是一个在0到1之间的实数,也常以百分数来表示。