Cholesky分解 编辑
线性代数中,科列斯基分解是指将一个正定矩阵的埃尔米特矩阵分解成一个三角矩阵与其共轭转置之乘积。这种分解方式在提高代数运算效率、蒙特卡罗方法等场合中十分有用。实数矩阵的科列斯基分解由安德烈-路易·科列斯基最先发明。实际应用中,科列斯基分解在求解线性方程组中的效率约两倍于LU分解
4
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
共轭梯度法,是求解系数矩阵为对称正定矩阵的线性方程组的数值解的方法。共轭梯度法是一个迭代方法,它适用于系数矩阵为稀疏矩阵的线性方程组,因为使用像Cholesky分解这样的直接方法求解这些系统所需的计算量太大了。这种方程组在数值求解偏微分方程时很常见。
共轭梯度法,是求解系数矩阵为对称正定矩阵的线性方程组的数值解的方法。共轭梯度法是一个迭代方法,它适用于系数矩阵为稀疏矩阵的线性方程组,因为使用像Cholesky分解这样的直接方法求解这些系统所需的计算量太大了。这种方程组在数值求解偏微分方程时很常见。