运动常数 编辑
经典力学里,对于一个动力系统,随着时间的演进,所有保持不变的物理量都称为运动常数,又称为守恒量。它的作用有点类似运动的约束。可是,运动常数是数学的约束,自然地从运动方程式中显现出来,而不是物理的约束;物理的约束会有相应的约束力来维持这约束。常见的运动常数例子有能量守恒定律动量守恒定律角动量守恒定律拉普拉斯-龙格-冷次向量
5
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
雅各布·赫尔曼,生于瑞士巴塞尔,是一位杰出的数学家。有关于经典力学的问题是他的专门研究之一。他可能是最先表明拉普拉斯-龙格-冷次向量守恒的科学家:在反平方定律连心力作用下,拉普拉斯-龙格-冷次向量是一个运动常数
在经典力学里,拉普拉斯-龙格-冷次向量主要是用来描述,当一个物体环绕着另外一个物体运动时,轨道的形状与取向。典型的例子是行星的环绕着太阳公转。在一个物理系统里,假若两个物体以万有引力相互作用,则LRL向量必定是一个运动常数,不管在轨道的任何位置,计算出来的LRL向量都一样;也就是说,LRL向量是一个保守量。更广义地,在开普勒问题里,由于两个物体以连心力相互作用,而连心力遵守平方反比定律,所以,LRL向量是一个保守量。
在经典力学里,拉普拉斯-龙格-冷次向量主要是用来描述,当一个物体环绕着另外一个物体运动时,轨道的形状与取向。典型的例子是行星的环绕着太阳公转。在一个物理系统里,假若两个物体以万有引力相互作用,则LRL向量必定是一个运动常数,不管在轨道的任何位置,计算出来的LRL向量都一样;也就是说,LRL向量是一个保守量。更广义地,在开普勒问题里,由于两个物体以连心力相互作用,而连心力遵守平方反比定律,所以,LRL向量是一个保守量。
在经典力学里,对于一个动力系统,随着时间的演进,所有保持不变的物理量都称为守恒量,又称为运动常数。由于很多物理定律会表达某种守恒行为,对应的守恒量时常会出现于真实系统。例如,假设在某系统内涉及的作用力是保守力,则此系统的能量是守恒量。假设涉及的作用力是连心力,则此系统的角动量是守恒量。
在经典力学里,拉普拉斯-龙格-冷次向量主要是用来描述,当一个物体环绕着另外一个物体运动时,轨道的形状与取向。典型的例子是行星的环绕着太阳公转。在一个物理系统里,假若两个物体以万有引力相互作用,则LRL向量必定是一个运动常数,不管在轨道的任何位置,计算出来的LRL向量都一样;也就是说,LRL向量是一个保守量。更广义地,在开普勒问题里,由于两个物体以连心力相互作用,而连心力遵守平方反比定律,所以,LRL向量是一个保守量。
在经典力学里,拉普拉斯-龙格-冷次向量主要是用来描述,当一个物体环绕着另外一个物体运动时,轨道的形状与取向。典型的例子是行星的环绕着太阳公转。在一个物理系统里,假若两个物体以万有引力相互作用,则LRL向量必定是一个运动常数,不管在轨道的任何位置,计算出来的LRL向量都一样;也就是说,LRL向量是一个保守量。更广义地,在开普勒问题里,由于两个物体以连心力相互作用,而连心力遵守平方反比定律,所以,LRL向量是一个保守量。
在经典力学里,拉普拉斯-龙格-冷次向量主要是用来描述,当一个物体环绕着另外一个物体运动时,轨道的形状与取向。典型的例子是行星的环绕着太阳公转。在一个物理系统里,假若两个物体以万有引力相互作用,则LRL向量必定是一个运动常数,不管在轨道的任何位置,计算出来的LRL向量都一样;也就是说,LRL向量是一个保守量。更广义地,在开普勒问题里,由于两个物体以连心力相互作用,而连心力遵守平方反比定律,所以,LRL向量是一个保守量。
在经典力学里,拉普拉斯-龙格-冷次向量主要是用来描述,当一个物体环绕着另外一个物体运动时,轨道的形状与取向。典型的例子是行星的环绕着太阳公转。在一个物理系统里,假若两个物体以万有引力相互作用,则LRL向量必定是一个运动常数,不管在轨道的任何位置,计算出来的LRL向量都一样;也就是说,LRL向量是一个保守量。更广义地,在开普勒问题里,由于两个物体以连心力相互作用,而连心力遵守平方反比定律,所以,LRL向量是一个保守量。