内积空间 编辑
内积空间是数学中的线性代数里的基本概念,是增添了一个额外的结构的向量空间。这个额外的结构叫做内积标量积。内积将一对向量与一个标量连接起来,允许我们严格地谈论向量的“”和“长度”,并进一步谈论向量的正交。内积空间由欧几里得空间抽象而来,这是泛函分析讨论的课题。
2
相关
豪斯霍尔德变换或译“豪斯霍德转换”,又称初等反射,最初由在1932年提出。阿尔斯通·斯科特·豪斯霍尔德在1958年指出了这一变换在数值线性代数上的意义。这一变换将一个向量变换为由一个超平面反射的镜像,是一种线性变换。其变换矩阵被称作豪斯霍尔德矩阵,在一般内积空间中的类比被称作豪斯霍尔德算子。超平面的法向量被称作豪斯霍尔德向量。
在数学中,点积又称或标量积,是一种接受两个等长的数字序列、返回单个数字的代数运算。在欧几里得几何中,两个笛卡尔坐标系向量的点积常称为,见内积空间
在数学中,点积又称或标量积,是一种接受两个等长的数字序列、返回单个数字的代数运算。在欧几里得几何中,两个笛卡尔坐标系向量的点积常称为,见内积空间
在数学中,点积又称或标量积,是一种接受两个等长的数字序列、返回单个数字的代数运算。在欧几里得几何中,两个笛卡尔坐标系向量的点积常称为,见内积空间
在数学中,平行四边形恒等式是描述平行四边形的几何特性的一个恒等式。它逻辑等价于三角形的中线定理。在一般的赋范空间内积空间中,也有类似的结果。这个等式的最简单的情形是在普通的平面上:一个平行四边形的两条对角线长度的平方和,等于它四边长度的平方和。假设这个平行四边形是写作



A
B
C
D


{\displaystyle ABCD}

的话,那么平行四边形恒等式就可以写成:
在线性代数中,一个内积空间的正交基是元素两两正交的基。称基中的元素为基向量。假若,一个正交基的基向量的模长都是单位长度1,则称这正交基为标准正交基或"规范正交基"。
在数学里,希尔伯特空间即完备的内积空间,也就是一个带有内积的完备向量空间。希尔伯特空间是有限维欧几里得空间的一个推广,使之不局限于实数的情形和有限的维数,但又不失完备性。与欧几里得空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西序列会收敛到此空间里的一点,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。
在数学里,希尔伯特空间即完备的内积空间,也就是一个带有内积的完备向量空间。希尔伯特空间是有限维欧几里得空间的一个推广,使之不局限于实数的情形和有限的维数,但又不失完备性。与欧几里得空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西序列会收敛到此空间里的一点,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。
在数学分析中,以马克-安托万·帕塞瓦尔命名的帕塞瓦尔恒等式是一个有关函数的傅里叶级数的可加性的基础结论。从几何观点来看,这就是内积空间上的毕达哥拉斯定理。
在数学中,点积又称或标量积,是一种接受两个等长的数字序列、返回单个数字的代数运算。在欧几里得几何中,两个笛卡尔坐标系向量的点积常称为,见内积空间