泛函指以函数构成的向量空间为定义域,实数为值域为的“函数”,即某一个依赖于其它一个或者几个函数确定其值的量,往往被称为“函数的函数”。在泛函分析中,泛函也用来指一个从任意向量空间到标量域的映射。泛函中的一类特例线性泛函引发了对对偶空间的研究。泛函的应用可以追溯到变分法,其中通常需要寻找一个函数用来最小化某个特定泛函。在物理学上,寻找某个能量泛函的最小系统状态是泛函的一个重要应用。
在数学里,任何向量空间V都有其对应的对偶向量空间,由V的线性泛函组成。此对偶空间俱有一般向量空间的结构,像是向量加法及纯量乘法。由此定义的对偶空间也可称之为代数对偶空间。在拓扑向量空间的情况下,由连续的线性泛函组成的对偶空间则称之为连续对偶空间。
在数学里,任何向量空间V都有其对应的对偶向量空间,由V的线性泛函组成。此对偶空间俱有一般向量空间的结构,像是向量加法及纯量乘法。由此定义的对偶空间也可称之为代数对偶空间。在拓扑向量空间的情况下,由连续的线性泛函组成的对偶空间则称之为连续对偶空间。
在数学里,任何向量空间V都有其对应的对偶向量空间,由V的线性泛函组成。此对偶空间俱有一般向量空间的结构,像是向量加法及纯量乘法。由此定义的对偶空间也可称之为代数对偶空间。在拓扑向量空间的情况下,由连续的线性泛函组成的对偶空间则称之为连续对偶空间。
泛函指以函数构成的向量空间为定义域,实数为值域为的“函数”,即某一个依赖于其它一个或者几个函数确定其值的量,往往被称为“函数的函数”。在泛函分析中,泛函也用来指一个从任意向量空间到标量域的映射。泛函中的一类特例线性泛函引发了对对偶空间的研究。泛函的应用可以追溯到变分法,其中通常需要寻找一个函数用来最小化某个特定泛函。在物理学上,寻找某个能量泛函的最小系统状态是泛函的一个重要应用。
在数学里,任何向量空间V都有其对应的对偶向量空间,由V的线性泛函组成。此对偶空间俱有一般向量空间的结构,像是向量加法及纯量乘法。由此定义的对偶空间也可称之为代数对偶空间。在拓扑向量空间的情况下,由连续的线性泛函组成的对偶空间则称之为连续对偶空间。
在数学里,任何向量空间V都有其对应的对偶向量空间,由V的线性泛函组成。此对偶空间俱有一般向量空间的结构,像是向量加法及纯量乘法。由此定义的对偶空间也可称之为代数对偶空间。在拓扑向量空间的情况下,由连续的线性泛函组成的对偶空间则称之为连续对偶空间。
数学上,卡迪森-辛格问题于1959年提出,有关泛函分析,问某个特定C*-代数上的任意线性泛函,延拓到另一个较大的C*-代数时,是仅有唯一的可能,抑或可以有多个不同的延拓。2013年,问题得到解决,答案为肯定。
在线性代数中,1-形式是向量空间上的一种线性泛函。1-形式在这种向量空间语境中的使用方式,通常区别于高阶的多重线性形式中的1-形式。细节参见线性泛函。