豪斯多夫维数 编辑
豪斯多夫维数又称作费利克斯·豪斯多夫-贝塞科维奇维数或分形维数,它是由德国数学家豪斯多夫于1918年引入的。通过豪斯多夫维数可以定义任意度量空间子集维度,包括像是分形等复杂的集合。对于简单的几何形状比如线、长方形、长方体等豪斯多夫维数等同于它们通常的几何维度或者说拓扑维度。通常来说一个物体的豪斯多夫维数不像拓扑维度一样总是一个自然数而可能会是一个非整的有理数或者无理数
7
图片 0 图片
评论 0 评论
匿名用户 · [[ show_time(comment.timestamp) ]]
[[ nltobr(comment.content) ]]
相关
在分形几何中,分数维D,是一个描述一个分形对空间填充程度统计量。分数维没有统一的定义。主要的分数维定义方法有豪斯多夫维数、计盒维数和分配维数等。
在数学中,特别是测度论中,外测度是一个定义在给定集合上的扩展的实数轴的函数,并满足几条附加条件。一般的外测度理论由C. Carathéodory引进,目的是给测度和可数可加测度的理论建立基础。C. Carathéodory关于外测度上所做的工作应用于测度理论中的集合论上。费利克斯·豪斯多夫也用此来定义一个类似维数的度量,现在称为豪斯多夫维数
数学中 ,填充维度是一种可用于定义度量空间中子集之维度的概念。某种程度上,填充维度和豪斯多夫维数是对偶的,因为填充维度是利用“填充”给定的子集来定义,而郝斯多夫维度是利用“覆盖”给定的子集来定义。填充维度C.Tricot Jr.在1982年引入。
在分形几何中,分数维D,是一个描述一个分形对空间填充程度统计量。分数维没有统一的定义。主要的分数维定义方法有豪斯多夫维数、计盒维数和分配维数等。
在分形几何中,分数维D,是一个描述一个分形对空间填充程度统计量。分数维没有统一的定义。主要的分数维定义方法有豪斯多夫维数、计盒维数和分配维数等。
在分形几何中,H树是一种分形树结构,由互相垂直的线段构成,其中任意一条线段的长度都是次一级线段的2的平方根倍。它因类似于字母“H”的重复图案而得名。它的豪斯多夫维数为2,能任意接近矩形中的每一点。其应用包括超大规模集成电路设计和微波工程。