P进数 编辑




p


{\displaystyle p}

进数,是数论中的概念,也称作局部数域,是有理数拓展成的完备空间数域的一种。这种拓展与常见的有理数域




Q



{\displaystyle \mathbb {Q} }

实数




R



{\displaystyle \mathbb {R} }

复数




C



{\displaystyle \mathbb {C} }

的数系拓展不同,其具体在于所定义的“度量”概念。



p


{\displaystyle p}

进数的距离概念建立在整数整除性质上。给定素数



p


{\displaystyle p}

,若两个数之差被



p


{\displaystyle p}

的高次整除,那么这两个数距离就“接近”,幂次越高,距离越近。这种定义在数论性质上的“距离”能够反映同余的信息,使



p


{\displaystyle p}

进数理论成为了数论研究中的有力工具。
1
相关
奥斯特洛夫斯基定理是一个关于有理数域绝对赋值的定理。于1916年由亚历山大·马雅科维奇·奥斯特洛夫斯基证明。该定理说明,任何非平凡的有理数Q的绝对赋值要么等价于通常实数的绝对赋值,要么等价于P进数的绝对赋值。
在抽象代数中,交换代数旨在探讨环及其理想,以及交换环上的模。代数数论与代数几何皆奠基于交换代数。交换环中最突出的例子包括多项式环、代数整数环与P进数环,以及它们的各种商环与局部化。
1 + 1 + 1 + 1 + …,亦写作






n
=
1






n

0




{\displaystyle \sum _{n=1}^{\infty }n^{0}}

,






n
=
1






1

n




{\displaystyle \sum _{n=1}^{\infty }1^{n}}








n
=
1





1


{\displaystyle \sum _{n=1}^{\infty }1}

,是一个发散级数,表示其部分和形成的数列不会收敛数列。数列1可以视为公比为1的等比级数。不同于其他公比为有理数的等比级数,此级数不但在实数下不收敛,在某些特定数字p的P进数下也不收敛。若在扩展的实数轴中,因为部分和形成的数列单调函数递增且没有上界,因此级数的值如下:
1 + 1 + 1 + 1 + …,亦写作






n
=
1






n

0




{\displaystyle \sum _{n=1}^{\infty }n^{0}}

,






n
=
1






1

n




{\displaystyle \sum _{n=1}^{\infty }1^{n}}








n
=
1





1


{\displaystyle \sum _{n=1}^{\infty }1}

,是一个发散级数,表示其部分和形成的数列不会收敛数列。数列1可以视为公比为1的等比级数。不同于其他公比为有理数的等比级数,此级数不但在实数下不收敛,在某些特定数字p的P进数下也不收敛。若在扩展的实数轴中,因为部分和形成的数列单调函数递增且没有上界,因此级数的值如下:
1 + 1 + 1 + 1 + …,亦写作






n
=
1






n

0




{\displaystyle \sum _{n=1}^{\infty }n^{0}}

,






n
=
1






1

n




{\displaystyle \sum _{n=1}^{\infty }1^{n}}








n
=
1





1


{\displaystyle \sum _{n=1}^{\infty }1}

,是一个发散级数,表示其部分和形成的数列不会收敛数列。数列1可以视为公比为1的等比级数。不同于其他公比为有理数的等比级数,此级数不但在实数下不收敛,在某些特定数字p的P进数下也不收敛。若在扩展的实数轴中,因为部分和形成的数列单调函数递增且没有上界,因此级数的值如下:
1 + 1 + 1 + 1 + …,亦写作






n
=
1






n

0




{\displaystyle \sum _{n=1}^{\infty }n^{0}}

,






n
=
1






1

n




{\displaystyle \sum _{n=1}^{\infty }1^{n}}








n
=
1





1


{\displaystyle \sum _{n=1}^{\infty }1}

,是一个发散级数,表示其部分和形成的数列不会收敛数列。数列1可以视为公比为1的等比级数。不同于其他公比为有理数的等比级数,此级数不但在实数下不收敛,在某些特定数字p的P进数下也不收敛。若在扩展的实数轴中,因为部分和形成的数列单调函数递增且没有上界,因此级数的值如下:
绝对赋值是Hensel引进P进数后发展出的一个概念,常用于单变量代数函数论或者类域论方面的研究。
在数学里,赫尔姆特·哈瑟的局部-全域原则,或称为哈瑟原则,是一个表示“一个方程可以在有理数上被解当且仅当它可以在实数上‘及’在每个质数p之P进数上被解”的原则。
在数学里,赫尔姆特·哈瑟的局部-全域原则,或称为哈瑟原则,是一个表示“一个方程可以在有理数上被解当且仅当它可以在实数上‘及’在每个质数p之P进数上被解”的原则。
p进数分析是研究变量为P进数的函数之数学分析性质的数学分支,属于数论研究中的领域。